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Mutual aid groups often serve as informal financial organizations that don’t rely on any central authority or

legal framework to resolve disputes. Rotating savings and credit associations (roscas) are informal financial

organizations common in settings where communities have reduced access to formal financial institutions. In

a rosca, a fixed group of participants regularly contribute small sums of money to a pool. This pool is then

allocated periodically typically using lotteries or auction mechanisms. Roscas are empirically well-studied in

the development economics literature. Due to their dynamic nature, however, roscas have proven challenging

to examine theoretically. Theoretical analyses within economics have made strong assumptions about features

such as the number or homogeneity of participants, the information they possess, their value for saving across

time, or the number of rounds. This work presents an algorithmic study of roscas. We use techniques from

the price of anarchy in auctions to characterize their welfare properties under less restrictive assumptions

than previous work. We also give a comprehensive theoretical study of the various Rosca formats. Using the

smoothness framework of Syrgkanis and Tardos [46] and other techniques we show that the most common

rosca formats have welfare within a constant factor of the best possible. This evidence further rationalizes

these organizations’ prevalence as a vehicle for mutual aid. Roscas present many further questions where

algorithmic game theory may be helpful; we discuss several promising directions.

1 INTRODUCTION
1.1 Mutual Aid and Informal Financial Organizations
This map shows the number of adults without access to a bank account or formal credit in each

country.

Fig. 1. Source: Map O.3 in Demirguc-Kunt et al. [24]

As you can see a large percentage of low- and middle-income countries have high numbers

of people without formal credit, But as shown on the map this isn’t a problem exclusive to low-

and middle-income nations. Globally over 1.7B people don’t have access to any formal financial

institutions. In the U.S alone, over 7.1M adults don’t have a bank account [21] and over 45M don’t

have a credit score [18]. When people aren’t able to access such vehicles, they have difficulty saving
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for purchases and investments and don’t have a robust safety net to deal with negative unforeseen

circumstances. Unfortunately, the people who are most unable to deal with unforeseen shocks are

most likely to experience them [1]. As we’ve seen during the COVID-19 pandemic, such shocks

can have devastating consequences and disproportionately affects ethnic/racial minorities and

other economically vulnerable groups. For example, before coronavirus, 33% of White households

in North Carolina households would have been unable to cover all of their expenses for three

months without assistance while this number was 63% and 68% for Black and Latinx households

respectively [30].

Mutual aid groups often serve as a way for people to self-organize to address these issues.

Mutual aid groups go beyond just financial help and take a specialized local approach to supporting

communities. As a result, they are more effective because small mutual aid groups are able to

act quickly and provide targeted support without dealing with incentive issues like corruption or

moral hazard that plague centralized approaches. Mutual aid is also distinguished from centralized

resource distribution by its focus on reciprocity, horizontality, and equality. Mutual aid groups

remove the divide between helper and helped and can effectively identify assess whether a person

lacks sufficient resources. In this way, they not only reach out to people left behind by centralized

relief programs but also go beyond crisis relief and offer community empowerment. Jun and Lance

[31] show that such grassroots measures have been surprisingly effective at responding to the

pandemic. In fact, the global pandemic has seen a rise of such mutual aid vehicles in the western

nations see [20] and [47]. Mesch et al. [39] reports that 21% of U.S. households indicated that their

giving to charitable organizations focused on purposes besides basic needs/health and religion

(e.g., education, arts, the environment) decreased during the COVID-19 pandemic, instead U.S.

households prioritized giving to meet the pressing needs of those in their area.

Mutual aid often takes shape in the form of informal financial organizations that don’t rely on

any legal framework or central authority to resolve disputes or enforce compliance. They are

often used by the developing world, the economically vulnerable and immigrant and refugee

communities see [6] and [38]. In addition to the social support role these typically play informal

financial organizations are used for (1) Informal Insurance like in risk-sharing networks (see

Fafchamps and Lund [26] for an example), (2) Informal Savings like in Accumulating Savings and

Credit Associations (see [11]) and (3) Informal Credit like in lending clubs (see [22].) But with such

simple structures, no central enforcer or legal framework how effective can these informal financial

organizations be at allocating resources to those with the most need? In this paper, we investigate

this question for the Rotating Savings and Credit Associations (roscas) an incredibly widespread

mutual aid organization and show that it is effective at allocating resources to those with the most

need.

1.2 Rotating Savings and Credit Associations
Rotating savings and credit associations (roscas) are informal financial organizations that are

commonly used in low- and middle-income nations as well as many immigrant and refugee

populations. These institutions serve as one mechanism for saving, credit, and insurance – among

other forms of financial and social support – in settings where communities have reduced access to

centralized financial institutions. Roscas often function as follows: a fixed number of participants,

usually from similar socio-economic backgrounds, come together to contribute small sums of

money to a pot in a periodic manner. At each meeting, the pot is then allocated to one participant

who has not yet received it. The allocation is usually determined by lottery or auction but roscas,

but flexibility is innate to roscas and so there are many variations on this format see Ardener [6].

Once a full round is completed and each participant has received a pot exactly once, the rosca

may disband or start over for another full round. Recipients of the pot often use their influx of
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cash to invest, especially in more expensive durable goods such as farm equipment, appliances,

or vehicles. As a result, this simple setup enables participants to effectively perform peer-to-peer

lending: members who receive the pot earlier borrow from those who receive it later.

The prevalence of roscas cannot be overstated. They have been observed as endemic to commu-

nities on five continents; [16] alone documents roscas in 85 countries. [17] estimates that roscas

account for about one-half of Cameroon’s national savings, and [8] estimates that over 1/6 of

households in Ethiopia’s highlands participate in ekub – the region’s variant of roscas. Roscas are

also vital fixtures in immigrant populations, enabling members to find community and financial

resources where such things might not otherwise be readily available.

The distinguishing characteristic of the rosca according to Ardener [6] is the recurrent rotation

of funds. The rosca allocation mechanism has often been used as a classification criteria in both

the economic and anthropological literature Kovsted and Lyk-Jensen [37]. Table 1 describes the

different rosca categories in each column. The name of the Rosca category is in the first row, the

method for determining allocation order is in the second row and examples are described in the

subsequent rows.

Fixed Rosca Random Rosca Bidding Rosca Market Rosca
Fixed criterion Lottery Contribution amount Negotiation

Wealth Level [36] Upfront lottery random

rosca [13]: lottery for re-

ceipt dates is held before

the first meeting

Premium bidding rosca

[37]: unallocated mem-

bers bid to receive the

pot that meeting by

promising higher future

contributions to the pot

Random roscas with after-

market [38]: members

are given initial random

assignments and are al-

lowed to switch posi-

tions through bilateral

agreements.

Social Status [6] Sequential lottery random

rosca [37]: the lottery is

held at the beginning of

each meeting

Discount bidding rosca

[37]: the bids are dis-

counts to the contribu-

tions to the pot from the

other members

Divisible rosca. [6]: mem-

bers are allowed to own

fractions or multiple

shares in the rosca and

members can split shares

Trust/Risk [38] Upfront bidding rosca

[13]: the bids to deter-

mine receipt dates is

held before the first

meeting

Table 1. Rosca Taxonomy

Roscas’ ubiquity has prompted nearly three decades of study by economists, starting with Besley

et al. [13]. Economic theory in particular has sought to explain the way roscas function as insurance,

saving, and most importantly, lending devices for members. Theoretical studies of roscas have

proved challenging for three key reasons. First, roscas are dynamic: participants make decisions in

an online fashion, and condition their future decisions on past outcomes. Second, as participants are

often uncertain about each others’ financial needs, a theory of roscas must accommodate incomplete

information. Finally, the sums of money in play in roscas are significant enough that agents’ utilities

are nonlinear. The standard economic approach of solving for auction equilibrium under any one

of these phenomena in isolation is already challenging. More comprehensive approaches have only

succeeded with aggressive simplifying assumptions.
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This work initiates an algorithmic study of roscas. In particular, the theory of worst-case analysis

of games, or price of anarchy provides tools for studying welfare properties of equilibria without

directly solving for them. Using these tools, we investigate the allocative efficiency of roscas i.e

how well roscas do at allocating resources to the members with the most need. We ask how well

these institutions coordinate saving and lending to people whose opportunities to invest a rosca’s

pot may be heterogeneous across individuals and across time. We show that under a wide range of

assumptions on both people’s values and the rules of the pot allocation protocol itself, roscas are

able coordinate a groups’ lending and borrowing in a way which approximately maximizes the

group’s total utility. In this way, we provide a flexible analysis to match and explain the diversity of

circumstances where roscas appear.

1.3 Our Contributions
To model saving and lending in roscas, we generalize the formulation of [14]. We assume each

agent seeks to purchase an investment such as a durable good, but only has means to do so upon

winning a rosca’s pot. We study the price of anarchy of a lottery, market-based and auction-based

roscas, where during each meeting, agents bid or make trades from initial assignments to choose a

winner among those who have not yet received a pot. Agents must weigh the value of investing

earlier against the utility-loss from spending their income to win. In an earlier version of this work,

on which we gave a spotlight talk at the NeurIPS 2020 Workshop on Fair AI in Finance and a short

talk at the IJCAI 2021 Workshop on AI for Social Good (AI4SG) we gave two main results:

• We showed that equilibria of the two most prevalent auction-based rosca formats, ascending-

and descending-price auctions (Def 4.1) maximize the total utility of participants up to a

constant factor which degrades smoothly as peoples’ marginal values for money grows.

• We showed that any rosca that uses a “reasonable” pot allocation protocol each period is

guaranteed high equilibrium welfare. In other words, we gave sufficient conditions on single-

item auctions which guarantee that the rosca with that auction protocol has good welfare i.e

low price of anarchy (Def 3.3).

We proved these results using a variant of the smoothness framework developed in [46]. The

rosca setting required us to adapt the framework to three challenges. First, payments in each

stage of a rosca are typically redistributed among members, complicating the standard accounting.

Second, participants’ utilities depend on their payments (and rebates) in a nonlinear way. Finally,

the sequential nature of roscas doesn’t lend itself to standard smoothness composition arguments.

More comprehensive approaches at rosca analysis had only succeeded with aggressive simplifying

assumptions prior to that version. This version presents never before seen analysis and results,

that expands on the initial work in two significant ways:

• We go beyond auction based Roscas and show that most of the commonly observed Rosca

formats, inn general maximize the total utility of participants up to a constant factor. We

give this bounds for random, bidding and market roscas.

• We greatly expand the criteria for “reasonable” pot allocation protocol to include weakly

smooth mechanisms which include many canonical protocols like the second-price or vickrey

auction (Def. 4.4) and rederive all of our previous results with fewer assumptions.

The expanded theory for weakly smooth mechanism for bidding roscas and the addition of the theo-

retical analysis of market and random roscas to our initial analysis make this the first comprehensive

algorithmic study of Roscas.
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2 RELATEDWORK
Extensive empirical evidence shows the pervasiveness and positive impact of these financial

institutions and their efficacy at improving economic, health, and social outcomes. In addition to

works already mentioned, Raccanello and Anand [43] document the use of roscas to finance high

healthcare expenditures and build wealth in Mexico. Aredo [8] demonstrates the dynamic and

flexible nature of roscas in Ethiopia and documents the wide variations on rosca that exist. Pasha

and Dayrra [42] show that ekub are a big engine of small business finance in Arba Minch and private

businesses actually prefer raising money from roscas than from formal financial organizations.

Amankwah et al. [4] and Alabi et al. [3] study roscas in Ghana, Ogujiuba et al. [41] in Nigeria,

and Kabuya [32] in Eswatini. Alabi et al. [3] show that people joined roscas for their perceived

efficiency in Ghana and show that roscas increased the development of micro and small enterprises.

Many studies analyze composition and participation differences across age, ethic, gender, and

socioeconomic lines. Adams Dale and Canavesi [2] and Ardener and Burman [7] show that rosca

participation is higher among women than men. Anderson and Baland [5] shows that employed

married women in Kenya at times use roscas as a way to take their income and save it in order

to protect their earnings from their husbands who may want to spend it immediately. Roscas are

known to often include members from similar socio-economic backgrounds, in part as a form of

insurance [8]. Nonetheless, Klonner [36] shows that intragroup diversity is associated with higher

rates of bidder altruism and more efficient intra-rosca allocations.

Economists have also studied the interaction of roscas with formal credit markets. For instance,

Besley et al. [14] show that while credit markets are more efficient than roscas, there are situations

in which one can expect a higher ex ante expected utility in roscas than formal credit markets.

Relatedly, Fang et al. [27] show that in cases where formal credit markets are present but imperfect,

roscas and credit markets can complement one another, thereby improving social welfare.

A different line of work studies roscas as a form of insurance. Klonner [34] develops the first such

model of roscas, comparing their performance to risk-sharing contracts. In this model, roscas can

serve as a form of financial intermediary and generate more returns for more risk-averse participants

who function as a sort of insurance provider. This work also analyzes the risk-sharing performance

of a simple set-up where a group of homogeneous people run several bidding roscas simultaneously.

He shows that this set-up performs as well as a linear risk-sharing contract and is more enforceable

since it carries fixed rather than variable contributions from the participants. Similarly, Baland et al.

[9] shows some previously-observed behaviors that may be deemed irrational can be explained by

considering roscas as a form of insurance. Calomiris and Rajaraman [19] empirically demonstrate

that roscas are used as a form of insurance. Using data from roscas in India, Calomiris and Rajaraman

[19] show the unpredictable needs for funds, is reflected by the volatility of interest rates implicit

in winning bids.

This work is most closely related to the micro-economic work on roscas. Besley et al. [13, 14]

lay the first theoretical model of roscas and subsequent studies focus on providing comparative

welfare guarantees, e.g., between random and bidding roscas, or between roscas and alternative

institutions. They make stronger asssumptions than us like homogeneity across participants and

participants values being homogenous across time. They( Besley et al. [13, 14]) show that both the

random and bidding rosca are inefficient but do not give bounds on this inefficiency like we do.

Kovsted and Lyk-Jensen [37] analyze differences between random and bidding roscas, again under

the assumption that people are saving for a large purchase. They allow for some heterogeneity in

people’s access to credit, Kovsted and Lyk-Jensen [37] again provide a comparative welfare analysis

between bidding and random roscas. They do not, however, quantify the welfare differences or loss

as we do.
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This work applies techniques from auction theory and the price of anarchy literature.Smoothness

is the main tool used to analayze roscas. Syrgkanis and Tardos [46] adapts the theory of smooth

games from Roughgarden [44] to auctions. They give a sufficient condition for a game to have

approximately-optimal equilibrium welfare, and show that smoothness is preserved in combination

with other smooth mechanisms. In addition, smoothness-derived guarantees generalize beyond

standard quasilinear, full-information settings to learning outcomes and Bayes-Nash equilibria, large

games Feldman et al. [28], risk-averse agents, Kesselheim and Kodric [33], and more. Roughgarden

et al. [45] give a complete survey.

3 WARMUP: RANDOM ROSCAS WITH AFTER-MARKET
We first analyze a simpler model of roscas to illustrate the kind of welfare analysis we will do on

the more analytically challenging auction based roscas. Ardener [6] reports that rosca in which

participants use a lottery to determine the receipt order i.e random roscas are the most common

rosca format. However as observed in Mequanent [38] often times the lottery is used just as an

initial assignment. Rosca members are free to trade places with each other later, such trades are

usually induced via side payments or as a result of altruism [38]. In this section we model these

Random Roscas with After-Market (Rram) and show that they are a 2-approximation of the optimal

assignment.

We first give a description of the general rosca process. Formally, a rosca for 𝑛 people takes place

over 𝑛 discrete time periods. Each period, three things occur. (1) Each person pays an amount 𝑝0
into a common pot. (2) A winner for the 𝑛𝑝0 units of money in the pot is decided among those who

have not yet won. (3) People make any payments 𝑝𝑡𝑖 induced by the selection process in period 𝑡 .

This could be positive or negative depending on the selection process and the person’s outcomes.

ALGORITHM 1: General Rosca Process
input :A set members of members and an allocation procedure𝑀

output :An 𝑛-dimensional array assignment where assignment[𝑡] is the person who receives the pot

in period 𝑡 . An 𝑛 × 𝑛-dimensional payments where payments[𝑡] [𝑖] give 𝑖’s payments above

𝑝0 in period 𝑡

active← members;
assignment;
payments;
for 𝑡 ← 1 to 𝑛 do

pot← 0;

for 𝑖 ← 1 to 𝑛 do
pot← pot +members[𝑖] .pay(𝑝0);

end
𝑤 ← M.Allocate(active, 𝑡, pot);
payments[𝑡] ← M.ChargePayments(active, 𝑡, pot);
assignment[𝑡] ← w;

Remove(active,𝑤);

end
return assignment, payments;

The payments 𝑝0 into the pot are decided ex ante, during the formation of the rosca. We will

not model the process of selecting 𝑝0, instead taking 𝑝0 as given, See [13], [14], [34] for models

where 𝑝0 is endogenous people can optimize over the choice of 𝑝0. As in previous models like [13],

[14], we do not think about rosca defaults and assume everyone pays their contribution. Empirical

evidence suggests this is reasonable as the personal cost of defaulting is high in informal financial



Christian Ikeokwu 7

organizations because these groups usually serve a social support role and rely on interpersonal

relationship. This social structure has been used in the nobel winning work of Banerjee and Duflo

[10] and by Besley and Coate [12] to improve default rates and credit access in rural impoverished

communities.

Roscas give individuals without access to banking a way to save for substantial investments

such as large durable goods. We assume each person desires to pay for a one-time investment,

yielding for person 𝑖 a utility stream of 𝜉𝑡𝑖 units at period 𝑡 if and only if the person has invested in

the past. This utility stream could be things like daily profit from a taxi to monthly crops from a

farm. We follow [13] and assume the cost of the investment is homogeneous across people, and

equal to the pot amount 𝑛𝑝0 . However, we allow 𝜉𝑡𝑖 to vary across time and across people. In this

section while we are modelling a simple Rram, we assume people have quasilinear utilities i.e utility

functions that are linear in one argument. In our case, utilities are linear in wealth consumption,

in Section 5 we generalize this to concave utilities. Each period 𝑡 , each person has initial wealth

level 𝑤𝑡
𝑖 . In a Rram after paying 𝑝0 into the pot and making additional side payments 𝑝𝑡𝑖 during

the after-market, where they make bilateral swap agreements after some initial assignment, the

person consumes their remaining wealth for period 𝑡 for some utility of𝑤𝑡
𝑖 − 𝑝0 − 𝑝𝑡𝑖 . Let I𝑡𝑖 indicate

whether a member has invested by time 𝑡 . A person’s utility at time 𝑡 is thus𝑤𝑡
𝑖 − 𝑝0 − 𝑝𝑡𝑖 + 𝜉𝑡𝑖 I𝑡𝑖 .

Let 𝑥 (𝑖) : [𝑛] → [𝑛] be a bijective map from people to receipt periods, so 𝑥 (𝑖) = 𝑗 if person 𝑖

receives the 𝑗 th pot. We let 𝑣𝑖 : [𝑛] → R0+, 𝑣𝑖 ( 𝑗) =
∑𝑛

𝑡=𝑗 𝑤
𝑡
𝑖 − 𝑝0 − 𝑝𝑡𝑖 + 𝜉𝑡𝑖 I𝑡𝑖 denote person 𝑖’s value

for receiving the pot in period 𝑗 . We evaluate an assignment by the total utility it generates for all

participants i.e utilitarian social welfare

Definition 3.1 (Utilitarian Social Welfare). The Social Welfare for an assignment 𝑥 is given by

welf(𝑣, 𝑥) =
𝑛∑
𝑖=1

𝑣𝑖 (𝑥 (𝑖)) (1)

We allow people to make pairwise trades if the trade is beneficial to overall social welfare. This

is reasonable, because even if the swap isn’t beneficial to one person an increase in social welfare

implies that the benefiting stakeholder could simply pay the other one to induce the trade. Thus

we say an outcome is swap-stable if there are no socially beneficial swaps.

Definition 3.2 (Swap-Stable). An assignment 𝑥 : [𝑛] → [𝑛] is swap-stable if ∀𝑖, 𝑗
𝑣𝑖 (𝑥 (𝑖)) + 𝑣 𝑗 (𝑥 ( 𝑗)) ≥ 𝑣𝑖 (𝑥 ( 𝑗)) + 𝑣 𝑗 (𝑥 (𝑖)) (2)

We adopt the convention that the optimal assignment OPT(𝑣) is 𝑥 (𝑖) = 𝑖 (we can simply relabel

people without loss of generality) we compare the utilitarian social welfare achieved by the rram to

that of the optimal assignment. To evaluate the quality of a protocol we compare the performance of

its outcomes (swap-stable) on an objective (social welfare) to that achieved by the optimal algorithm

OPT, i.e the algorithm that has perfect information and unlimited computing power and can force

everyone to do the optimal action for that objective. We express this quality as a ratio between the

worst objective function value of an outcome of our protocol and an optimal outcome. This ratio

is analogous to the approximation ratio from algorithm design and is called the price of anarchy

because it captures the cost to society from the lack of a benevolent central enforcer.

Definition 3.3 (Price of Anarchy).

max

𝑥 ∈SS

∑𝑛
𝑖=1 𝑣𝑥 (𝑖) (𝑥 (𝑖))∑𝑛
𝑖=1 𝑣𝑖 (𝑥 (𝑖))

where SS here denotes the space of swap-stable assignments
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With all the relevant definitions, we now present the first welfare guarantee for random roscas

with after-markets

Lemma 3.4. Any assignment that is a swap stable has a price of anarchy at most 2

Proof. For all, 𝑖, 𝑗 swap-stable implies that

𝑣𝑖 (𝑥 (𝑖)) + 𝑣 𝑗 (𝑥 ( 𝑗)) ≥ 𝑣𝑖 (𝑥 ( 𝑗)) + 𝑣 𝑗 (𝑥 (𝑖)) (3)

Pick a specific 𝑖 and let 𝑗 = 𝑥 (𝑖) equation 3 becomes

𝑣𝑖 (𝑥 (𝑖)) + 𝑣𝑥 (𝑖) (𝑥 (𝑥 (𝑖))) ≥ 𝑣𝑖 (𝑥 (𝑥 (𝑖))) + 𝑣𝑥 (𝑖) (𝑥 (𝑖)) (4)

Summing across all 𝑖 , since every person is assigned a pot (4) becomes

2

∑
𝑖

𝑣𝑖 (𝑥 (𝑖)) ≥
∑
𝑖

𝑣𝑥 (𝑖) (𝑥 (𝑖)) +
∑
𝑖

𝑣𝑖 (𝑥 (𝑥 (𝑖)))

Since 𝑣𝑖 (·) ≥ 0

2

∑
𝑖

𝑣𝑖 (𝑥 (𝑖)) ≥
∑
𝑖

𝑣𝑥 (𝑖) (𝑥 (𝑖))

But note the term on the right is just the welfare of the optimal assignment thus.

2

∑
𝑖

𝑣𝑖 (𝑥 (𝑖)) ≥ OPT(𝑣)

2 ≥ OPT(𝑣)∑
𝑖 𝑣𝑖 (𝑥 (𝑖))

=
OPT(𝑣)

welf(𝑣, 𝑥)
and thus the price of anarchy of any swap-stable assignment 𝑥 is at most 2. □

The following example constructed using linear programming shows that this bound is tight for

swap-stable matchings.

Example 3.5. Consider a 3-person Rosca let 𝑣1 = {(1, 1), (2, 0), (3, 0)}, 𝑣2 = {(1, 1), (2, 1), (3, 0)},
𝑣3 = {(1, 0), (2, 0), (3, 0)} Then 𝑥 = {(1, 3), (2, 1), (3, 2)} is a swap-stable assignment however the

welfare achieved by the optimal assignment 𝑣1 (1) + 𝑣2 (2) + 𝑣3 (3) = 2 while the welfare achieved by

our assignment 𝑣1 (3) + 𝑣2 (1) + 𝑣3 (2) = 1. Thus swap-stable assignments have a price of anarchy

exactly 2.

Note that in this example people’s values are nonincreasing across time, this is interesting as

we will see in later sections this property is often helpful in improving the price of anarchy in

roscas
1
. For full information and code used to construct this example see Appendix B. Its easy to

see that just the lottery part of the rram is no better than an 𝑛-approximation: just give everyone

value 0, except for one person, who needs the money in round 1. So the after-market is a powerful

mechanism for achieving high welfare in as shown by the fact that as the number of participants

grows large the welfare contributions from the initial assignment are meaningless

1
In the case of Rrams, this property doesn’t improve POA as the example also proves our bound is tight for nonincreasing

values
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4 TECHNICAL BACKGROUND
4.1 Analytical Challenges for Bidding Roscas
Roscas which use some kind of auction to determine the receipt order are the most prevalent after

random roscas/rram see Ardener [6]. People’s bid in the rosca auctions are in terms of contributions

to the pot - either higher contributions or discounts to the other members. Typically these are held

using oral ascending or descending bid auctions in each round. These and the other main types of

single-item auctions that are relevant to this paper are described below.

Definition 4.1 (Ascending-bid auctions). Ascending-bid auctions, also called English auctions.

These auctions are carried out usually in real time, with bidders present either physically or virtually.

The seller gradually raises the price, bidders drop out until only one bidder remains, and that bidder

wins the item at this final price.

Definition 4.2 (Descending-bid auctions). Descending-bid auctions, also called Dutch auctions.

This is also an interactive auction format, in which the seller gradually lowers the price from some

high starting value until a bidder accepts and pays the current price.

Definition 4.3 (First-price sealed-bid auctions). First-price sealed-bid auctions(FPA). In this kind

of auction, bidders submit simultaneous “sealed bids” to the seller. The terminology comes from

the original format for such auctions, in which bids were written down and provided in sealed

envelopes to the seller, who would then open them all together. The highest bidder wins the object

and pays the value of their bid to the seller.

Definition 4.4 (Second-price sealed-bid auctions). Second-price sealed-bid auctions (SPA) , also

called Vickrey auctions. Bidders submit simultaneous sealed bids to the sellers; the highest bidder

wins the object and pays the value of the second-highest bid to the seller.

The ascending and descending-bid auctions have equivalent “outcomes” to the second and first

price auctions respectively. For the ascending-bid and second-price auctions you can see why from

thinking about an ascending-bid auction, in which bidders gradually drop out as the seller steadily

raises the price. The winner of the auction is the last bidder remaining, and they pay the price at

which the second-to-last bidder drops out. For an argument for the descending-bid and first-price

auction see Chapter 9 of [25]. For these reasons we will restrict our analysis to the FPA and SPA.

Theoretical studies of the auction outcomes in roscas have proved challenging for three key

reasons. First, roscas are dynamic: participants make decisions in an online fashion, and condition

their future decisions on past outcomes. Second, as participants are often uncertain about each

others’ financial needs, a theory of roscas must accommodate incomplete information. Finally, the

sums of money in play in roscas are significant enough that people’s utilities are nonlinear. The

standard economic approach of solving for auction equilibrium under any one of these phenomena

in isolation is already challenging. As highlighted in Section 2 more comprehensive approaches at

rosca analysis have only succeeded with aggressive simplifying assumptions. For these reasons

theory developed and adapted to analyze bidding roscas is significantly more involved than that

of rram and so in the following section we will take some time motivating and providing the

necessary background to understand the analyses for bidding roscas.

4.2 Algorithmic Mechanism Design
In order to model and analyze welfare in roscas, this work primarily uses tools developed in

the algorithmic game theory (AGT) literature. Here, we introduce the necessary concepts and

terminology from the AGT literature; for a comprehensive and more general definitions, see Nisan
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et al. [40]. First, we define basic terminology thenwe discuss howwe capture the idea of a stable/final

outcome in a strategic situation.

A game ormechanism is any interaction between intelligent and strategic people (usually referred

to as agents) where agents’ actions or strategies affect their’s and other’s outcomes. A large number

of everyday interactions can be modeled as games and thus thinking formally about and developing

the theory of games is broadly important. For example, the Oberlin Computer Science Department

(OCCS) wants to give students a chance to explore a topic they are interested in at a high level

through the honors program. However, there is a limited number of faculty with a limited capacity

to help students with an honors project so they could come up with the “honors application game”

to help them effectively match professors to students. Factoring in what kinds of outcomes they

want, they decide the rules of the application process/game. For the 𝑛 students/agents, {1, 2, . . . , 𝑛}
who are interested in doing honors with some professor, the rules of the game determine the

set of possible actions/strategies 𝑆𝑖 for each agent 𝑖 . To participate in the application game, each

agent 𝑖 selects a strategy 𝑠𝑖 ∈ 𝑆𝑖 , e.g which professor to target in their application. We will use

𝑠 = (𝑠1, . . . , 𝑠𝑛) = (𝑠𝑖 , 𝑠−𝑖 ) to denote the vector of strategies selected by the agents, 𝑠𝑖 is the strategy

agent 𝑖 picks, 𝑠−𝑖 is the (𝑛 − 1)-dimensional vector of the strategies played by all other agents and

𝑆 = ×𝑖𝑆𝑖 denotes the set of all possible ways agents could pick strategies.

The actions 𝑠 ∈ 𝑆 selected by the agents determines the outcome for each agent, and agents

would prefer some outcomes over others. We specify agents’ preferences over outcomes using the

numerical values given by the utility function 𝑢𝑖 : 𝑆 → R. Thus 𝑢𝑖 (𝑠) – or equivalently 𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 )
– denotes an agent 𝑖’s utility from a certain outcome. In our illustrative example, since students

are trying to maximize their chances of getting matched with a professor, they factor in all the

information available, consider their resources and try to think about how the other students and

the professors are going to act. Since the students are rational they act in a way that maximizes

their chances of achieving a desirable outcome. If every agents is acting that way, then their actions

form a stable outcome or equilibrium.

Definition 4.5 (Nash Equilibrium). A strategy vector 𝑠 ∈ 𝑆 is said to be a Nash Equilibrium if for

all players 𝑖 and each alternate strategy 𝑠 ′𝑖 ∈ 𝑆𝑖

𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ) ≥ 𝑢𝑖 (𝑠 ′𝑖 , 𝑠−𝑖 ) (5)

This corresponds to the concept of a stable outcome because it says no one has any utility to

gain from unilaterally deviating from the current strategy. As you might expect such a strategy

might not always exist. In addition, a student might not know how many other students are

applying or what their preferences are we say they have incomplete information. What strategy

maximizes payoff depends on what the other students’ preferences are, so students must now pick

their strategies from a distribution based on their beliefs about other students’ preferences. Such

a randomized strategy is called a mixed strategy and always exist for any game with a finite set

of players and strategies [40], though they are generally hard to find (see Daskalakis et al. [23]).

Students have some idea of what other students’ preferences might be based on previous years and

other experiences, thus they have a distribution on the preferences of the other students and can

now pick a strategy to maximize their expected payoff.

Definition 4.6 (Bayes-Nash Equilibrium). A strategy vector 𝑠 ∈ 𝑆 is said to be a Bayes-Nash

Equilibrium (BNE) if for all players 𝑖 and each alternate strategy 𝑠 ′𝑖 ∈ 𝑆𝑖

E[𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 )] ≥ E[𝑢𝑖 (𝑠 ′𝑖 , 𝑠−𝑖 )] (6)
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Bayes-Nash Equilibria allow you to predict how rational people should/would act in a game.

Mechanism design aims to design games that have equilibria with desirable outcomes to the mech-

anism designer. Henceforth we will use 𝑠 to denote an equilibrium strategy while 𝑎 represents a

more general action or strategy that might not necessarily be an equilibrium.

5 FORMAL MODEL OF ROSCAS
We now present our model of Bidding Roscas, following [13], [14], as in Section 3 a rosca for 𝑛

agents takes place over 𝑛 discrete time periods. Each period, three things occur. (1) Each agent pays

an amount 𝑝0 into a common pot. (2) A winner for the 𝑛𝑝0 units of money in the pot is decided

among those who have not yet won. (3) In roscas that allocate by auction, we assume payments are

distributed evenly amongst the non-winning members as a third step in the process, as is common

in practice. We refer to this latter process as the internalized seller.

Roscas give individuals without access to banking a way to save for substantial investments

such as large durable goods. We assume each agent desires to pay for a one-time investment,

yielding for agent 𝑖 a utility stream of 𝜉𝑡𝑖 units at period 𝑡 if and only if the agent has invested in

the past. We follow [13] and assume the cost of the investment is homogeneous across agents,

and equal to the pot amount 𝑛𝑝0. However, we allow 𝜉𝑡𝑖 to vary across time and across agents.

We further assume each agent has concave, nonnegative utility 𝑈 for wealth consumption each

period. Concave utillities is the standard way to model risk-averse agents (like the typical rosca

participant) as small changes in wealth would lead to large changes in utility when an agent has

low wealth. Each period 𝑡 , each agent has initial wealth level𝑤 . After paying 𝑝0 into the pot and

making additional payments 𝑝𝑡𝑖 to the auction mechanism, the agent consumes their remaining

wealth for period 𝑡 for utility 𝑈 (𝑤 − 𝑝0 − 𝑝𝑡𝑖 ). Let I𝑡𝑖 indicate whether the agent has invested by

time 𝑡 . An agent’s utility at time 𝑡 is thus𝑈𝑖 (𝑤𝑖 − 𝑝0 − 𝑝𝑡𝑖 ) + 𝜉𝑡𝑖 I𝑡𝑖 .
We study the utilitarian social welfare of the rosca, given by

Welf =
∑

𝑖

∑
𝑡
𝜉𝑡𝑖 I

𝑡
𝑖 +

∑
𝑖

∑
𝑡
𝑈 (𝑤 − 𝑝0 − 𝑝𝑡𝑖 ). (7)

As our benchmark, we consider the optimal ordering for pot allocation, i.e. one-to-one function 𝑗∗

from agents to time periods maximizing the sum of agents’ utility streams. Note that we may also

allow wealth redistribution, but the concavity of 𝑈 implies any such redistribution is suboptimal.

Hence, our welfare benchmark is given by

OPT = max

𝑗∗:[𝑛]→[𝑛]

∑
𝑖

𝑛∑
𝑡=𝑗∗(𝑖)

𝜉𝑡𝑖 + 𝑛2𝑈 (𝑤 − 𝑝0),

The summation inOPT is the utility agents get from allocationOPT this is maximized in the optimal

allocation. The second term is the base utility agents enjoy from their starting wealth after they’ve

made their rosca contributions. The 𝑛2 comes from the fact that 𝑛 agents are making payments in 𝑛

periods. We seek to measure the worst-case approximation ratio betweenWelf and OPT i.e the

price of anarchy.

We finally note three assumptions on𝑈 . First, we have assumed homogeneity of𝑈 . This is valid

in practice: participants in roscas tend to possess similar socioeconomic status (see [38], [19]), and

thus it is reasonable to assume similar utility for wealth
2
. Second, we will assume in what follows

that the slope of𝑈 is bounded. This matches the observation that investments from roscas tend to be

significant (hence𝑈 ′(𝑥) := 1 is unreasonable), but not so large as to dwarf individuals’ livelihoods

[8]. We will parametrize our welfare approximations by the bounds on 𝑈 ’s slope. Finally, note that

2
Note that similar socioeconomic status doesn’t preclude varying investment opportunities or needs for large outlays of

cash, and hence the 𝜉𝑡
𝑖
may yet be heterogeneous.
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multiplicative approximation guarantees only improve as 𝑈 (𝑤 − 𝑝0) grows. It will therefore be
entirely without loss to take𝑈 (𝑤 − 𝑝0) = 0.

5.1 Roscas as Auctions
We now give definitions necessary to study the bidding rosca. In the process, we will recast roscas

in more standard auction-theoretic notation.

A multi-round allocation setting consists of 𝑛 agents and𝑚 items to be allocated, one item per

period An allocation consists of a mapping from the items to the agents. Each agent has a real-valued

valuation 𝑣𝑖 = (𝑣1𝑖 , . . . , 𝑣𝑚𝑖 ) over the items
3
, and agents are unit-demand: their value

4
for a set𝔖 of

items ismax𝑗 ∈𝔖 𝑣
𝑗

𝑖
. LetV𝑖 be the set of possible valuations of agent 𝑖 . An outcome in a multi-round

mechanism is an allocation 𝑥 and payment vector 𝑝 . Allocations are given by 𝑥 = (𝑥1, . . . , 𝑥𝑛),
where each 𝑥𝑖 = (𝑥1𝑖 , . . . , 𝑥𝑛𝑖 ) is an indicator vector, and 𝑥

𝑗

𝑖
= 1 if and only if 𝑖 receives item 𝑗 .

Denote by X the space of feasible allocations. Payments are of the form 𝑝𝑖 = (𝑝1𝑖 , . . . , 𝑝𝑚𝑖 ), with
each agent making payments each period. We assume agents’ utilities to be additively-separable

with convex disutility function 𝐶 (defined below) for payments:

𝑢
𝑣𝑖
𝑖
(𝑥𝑖 , 𝑝𝑖 ) = 𝑣𝑖 · 𝑥𝑖 −

∑
𝑗
𝐶 (𝑝 𝑗

𝑖
).

The rosca setting maps into this framework in the following way: each pot in a rosca is a distinct

item (with 𝑚 = 𝑛). An agent 𝑖 with utilities 𝜉1𝑖 , . . . , 𝜉
𝑛
𝑖 then has value 𝑣

𝑗

𝑖
=
∑𝑛

𝑘=𝑗
𝜉𝑘𝑖 for winning

the 𝑗th pot (and with later pots providing no additional value). Note that in this formulation, 𝑣
𝑗

𝑖

is decreasing in 𝑗 since agents only gain utility after they win a pot, and increasing 𝑗 implies

winning the pot later in time. The disutility function 𝐶 for payments in a rosca can be taken to be

𝐶 (𝑝 𝑗

𝑖
) = −𝑈 (𝑤 −𝑝0−𝑝 𝑗

𝑖
), since∑𝑗 𝜉

𝑗

𝑖
I
𝑗

𝑖
+∑𝑗 𝑈 (𝑤 −𝑝0−𝑝

𝑗

𝑖
) = 𝑣𝑖 ·𝑥𝑖 −

∑
𝑗 𝐶 (𝑝

𝑗

𝑖
) and∑𝑗 𝜉

𝑗

𝑖
I
𝑗

𝑖
= 𝑣𝑖 ·𝑥𝑖

by definition. Under these assumptions, we have

∑
𝑖 𝑢

𝑣𝑖
𝑖
(𝑥𝑖 , 𝑝𝑖 ) is exactly equal to the social welfare

given by (7).

We assume 𝐶 is non-decreasing in 𝑝 which is equivalent to𝑈 being decreasing with payments

and𝐶 (0) = 0, which is equivalent to𝑈 (𝑤 − 𝑝0) = 0. Since𝑈 ’s slope is bounded this is equivalent to

saying that 𝛼 ≤ 𝐶 ′(𝑝) ≤ 𝛽 where 𝛼, 𝛽 > 0. These assumptions imply some convenient properties

of 𝐶 (·):
i. 𝛼𝑥 ≤ 𝐶 (𝑥) ≤ 𝛽𝑥 , −𝛼𝑥 ≤ 𝐶 (𝑥), −𝐶 (𝑥) ≤ 𝛽𝑥 for any 𝑥 ≥ 0

ii. −𝛼𝑥 ≤ −𝐶 (𝑥) ≤ −𝛽𝑥 , 𝛼𝑥 ≤ −𝐶 (𝑥), 𝐶 (𝑥) ≤ −𝛽𝑥 for any 𝑥 ≤ 0

Some of our results hold for general mechanism not just allocation settings so it is useful to

define more general notation as well. However, picture an allocation setting like an auction when

trying to think of concrete mechanisms. It is also useful to differentiate between equilibrium and

non-equilibrium strategies, henceforth we will adopt the convention that 𝑠 denotes an equilibrium

strategy while 𝑎 represents a more general action.

In round 𝑗 ∈ [𝑚] of a multi-round mechanism, the mechanism takes a profile of actions 𝑎 𝑗 =

(𝑎 𝑗
1
, . . . , 𝑎

𝑗
𝑛) and outputs an allocation 𝑋 𝑗 (𝑎 𝑗 ) of item 𝑗 and a profile of payments 𝑃 𝑗 (𝑎 𝑗 ). The

mechanism may condition𝑋 𝑗
and 𝑃 𝑗

on previous rounds’ actions. Typical pot allocation procedures

in roscas resemble standard single-item auctions, with the additional restrictions that agents who

won in previous rounds are ineligible for allocation, and that payments are redistributed among all

agents.

3
We refer to items in our abstraction to multi-item auctions and pots in the rosca application interchangeably.

4
We will often alternate between writing valuations/allocation as vectors 𝑣

𝑗

𝑖
, 𝑥

𝑗

𝑖
or as vector valued functions 𝑣𝑖 (𝑥 𝑗

𝑖
), 𝑋𝑖 (𝑎)

for notation simplicity. Note, the output of the valuation/allocation functions could be 1x1 vectors. It should be clear from

context the dimensions of the output.



Christian Ikeokwu 13

We will consider mechanisms that are individually rational in each round i.e each agents utility

is nonnegative at the end of the mechanism. Thus, for any profile of actions in round 𝑗 , the only

agent with positive payments can be the winner of item 𝑗 . We will further assume that the winner’s

payments are redistributed among the losers. For example, in round 𝑗 of a rosca with a first-price

rule, agents submit bids 𝑏
𝑗

1
, . . . 𝑏

𝑗
𝑛 . Among those who have not yet won the pot, the highest bidder

𝑖∗ wins, and payments are 𝑃
𝑗

𝑖∗ = 𝑏
𝑗

𝑖∗ and 𝑃
𝑗

𝑖
= 𝑏

𝑗

𝑖∗/(𝑛 − 1) for 𝑖 ≠ 𝑖∗. We will show that not just

first- and second-price auctions, but any “reasonble” (i.e. smooth, defined in Section 6) single-item

auctions can form the basis for an approximately-optimal rosca.

We study dynamic equilibria of roscas under incomplete information on agents’ values for

their investment opportunities. In auction notation, each agent draws their profile of values

𝑣𝑖 = (𝑣1𝑖 , . . . , 𝑣𝑛𝑖 ) from a distribution 𝐹𝑖 , which is independent across agents, but correlated across

rounds (in particular, decreasing across rounds). Agents can observe histories of play in past rounds,

and hence a strategy 𝑠𝑖 is a mapping 𝑠
𝑗

𝑖
for each round 𝑗 from values and histories of past play to

actions/bids in round 𝑗 . A profile of strategies 𝑠 = (𝑠1, . . . , 𝑠𝑛) is a Bayes-Nash equilibrium if each

agent’s strategy maximizes their total utility across rounds, taken in expectation over other agents’

values. In what follows, we fix an auction format for pot distribution, and bound the worst-case

welfare approximation of roscas in the worst-case Bayes-Nash equilibrium, taken over all value

distributions and equilibrium strategy profiles for those value distributions. That is, we study:

max

𝐹, 𝑠∈BNE(𝐹 )

E𝑣∼𝐹 [OPT(𝑣)]
E𝑣∼𝐹 [

∑
𝑖 𝑢

𝑣𝑖
𝑖
(𝑋𝑖 (𝑠 (𝑣)), 𝑃𝑖 (𝑠 (𝑣)))]

,

i.e the price of anarchy of the mechanism where OPT(𝑣) = max𝑥 ∈X
∑

𝑖 𝑣𝑖 · 𝑥𝑖 .

6 SMOOTHNESS FOR ROSCAS
To introduce our analysis technique of smoothness, we briefly go over relevant definitions and theo-

rems of smoothness from Syrgkanis and Tardos [46]. Then we show how the theory of smoothness

can be adapted for Roscas.

Definition 6.1 (Smoothness). A mechanism is (𝜆, 𝜇)-smooth 𝜆, 𝜇 ≥ 0 if for any valuation profile

𝑣 ∈ ×𝑖V𝑖 and for any action profile 𝑎 there exists a randomized action a∗𝑖 (𝑣, 𝑎𝑖 ) for each player 𝑖

such that the following holds:∑
𝑖

𝑢
𝑣𝑖
𝑖
(a∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ 𝜆OPT(𝑣) − 𝜇

∑
𝑖

𝑃𝑖 (𝑎). (8)

Smoothness trades off revenue against an agents utility for deviating from their current actions.

The definition of a smooth mechanism has a very natural interpretation as guaranteeing an

approximate analog of market cleaning prices i.e utilities are maximized, all buyers have been

serviced and all inventory has been sold. Bikhchandani [15] showed that pure Nash equilibria of

a simultaneous first price auction have market clearing prices, and this implies that the outcome

is efficient. Aggregate market clearing prices are guaranteed when each agent can modify their

bid to claim their optimal allocation at the price paid for this allocation in the current solution.

(1, 1)-smoothness in essence requires this property only in aggregate, but for any outcome of the

mechanism, not only at equilibrium. While (𝜆, 𝜇)-smoothness requires this only approximately,

both in terms of the allocation claimed, as well as the price paid for it. In addition, unlike the pure

equilibrium analysis, it requires the modified bid to be ignorant of the actions of the rest of the

players.

Lemma 6.2. If a mechanism is (𝜆, 𝜇)-smooth and individually rational then the price of anarchy of

the mechanism is at most 𝜆/max(𝜇, 1)
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Proof. See Theorem 4.2 in Syrgkanis and Tardos [46] □

Example 6.3 (Second-Price Auction not Smooth). Take a 2-person SPA with quasilinear utilities

(i.e 𝐶 (𝑥) = 𝑥). If 𝑣1 = 1, 𝑣2 = 0 and if 𝑏1 = 0 and 𝑏2 = 1 + 𝜖 where 𝜖 > 0. Then this constitutes an

equilibrium as agent 1 wouldn’t want to change their bid as they would have to bid higher than

1 + 𝜖 to change the outcome but this results in −𝜖 < 0 utility. Agent 2 wouldnt want to change

their bid because the maximum utility they can ever get is 0 which is what they are getting in

this outcome. However, this example violates the smoothness condition and its price of anarchy is

unbounded.

Such degenerate examples can be avoided by imposing a no overbidding assumption. Under

such an assumption a weaker notion of smoothness is defined in [46] to capture mechanisms that

produce high efficiency under a no-overbidding refinement. The second-price auction satisfies this

weaker notion of smoothness and this is the weak smoothness we generalize in (Definition 6.5).

6.1 Smoothness with Internalized Sellers
The standard smoothness approach trades off revenue against agents’ deviation utilities. In auctions

with an internalized auctioneer, the former quantity is always zero. We now give an adapted

definition that generalizes to multi-round allocation mechanisms (the standard definition comes

when the number of rounds is 1) and accounts for the rebates made each round. For mechanisms

which are individually rational each round, the winners are the only agents generating payments

to be redistributed.

Definition 6.4 (Willingness-to-pay before Rebates). Let 𝑅𝑖 (𝑎) denote the rebates agent 𝑖 enjoys
under action profile 𝑎 i.e the money generated by the mechanism that is redistributed to the

losing agents. Then the maximum willingness-to-pay before rebates for an allocation 𝑥𝑖 when using

strategy 𝑎𝑖 is defined as the maximum they could ever pay before rebates conditional on allocation

𝑥𝑖

𝐵𝑖 (𝑎𝑖 , 𝑥𝑖 ) = max

𝑎−𝑖 :𝑋𝑖 (𝑎)=𝑥𝑖
𝐶 (𝑃𝑖 (𝑎) + 𝑅𝑖 (𝑎))

Note, without internalized sellers (rebates = 0) and with quasilinear bidders (𝐶 (𝑥) = 𝑥) this

definition is exactly the definition of willingness-to-pay from [46].

Definition 6.5 (Weakly Smooth before Rebates). A multi-round allocation mechanism is weakly

(𝜆, 𝜇1, 𝜇2, 𝜇3)-smooth before rebates 𝜆, 𝜇1, 𝜇2, 𝜇3 ≥ 0 if for any valuation profile ×𝑖V𝑖 and for any

action profile 𝑎 there exists a randomized action a∗𝑖 (𝑣, 𝑎𝑖 ) for each player 𝑖 such that the following

holds:∑
𝑖

𝑢
𝑣𝑖
𝑖
(a∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ 𝜆OPT(𝑣) − 𝜇1

∑
𝑖

∑
𝑗

𝑃
𝑗

𝑖
(𝑎) − 𝜇2

∑
𝑖

∑
𝑗

𝑅
𝑗

𝑖
(𝑎) − 𝜇3

∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑎,𝑋 (𝑎)) (9)

Definition 6.6 (Smooth before Rebates). A multi-round allocation mechanism is (𝜆, 𝜇1, 𝜇2)-smooth

before rebates if its weakly (𝜆, 𝜇1, 𝜇2, 0)-smooth before rebates

Definition 6.7 (No Overbidding). A strategy profile 𝑎 satisfies round-wise no overbidding if

E
𝑎
[𝐵 𝑗

𝑖
(𝑎𝑖 , 𝑋𝑖 (𝑎))] ≤ E

𝑎
[𝑣 𝑗

𝑖
(𝑋 𝑗

𝑖
(𝑎))]

Note this is the same as saying 𝑃
𝑗

𝑖
(𝑎) + 𝑅 𝑗

𝑖
(𝑎) ≤ 𝐶−1 (𝑣 𝑗

𝑖
(𝑋 𝑗

𝑖
(𝑎)))

Claim 1. All the welfare guarantees in this paper hold for smooth mechanisms (strong form) without

a no overbidding assumption.



Christian Ikeokwu 15

Proof Sketch. First, note mathematically that in all our coming proofs we only use the no

overbidding assumption to bound 𝐵
𝑗

𝑖
(𝑎𝑖 , 𝑋𝑖 (𝑎)) and the coefficient 𝜇3 on this term is 0 in a smooth

mechanisms. Unnatural equilibria where agents overpay in an early round to induce higher pay-

ments (and therefore rebates) from their competition later on cannot hurts us. Why? Rebates in

each round have to be less than 𝐶−1 (𝑣𝑤𝑗
(𝑥𝑤𝑗
)) where 𝑤 𝑗 denotes the agent who won the item

in round 𝑗 . Since our mechanisms are individually rational 𝑤 𝑗 is the only one making positive

payments each round and thus they have to pay less than 𝐶−1 (𝑣𝑤𝑗
(𝑥𝑤𝑗
)) to avoid negative utility.

Thus if an agents is overbidding to get higher rebates in future rounds this only works if their

overbid causes them to win in strongly smooth mechanisms but as we showed earlier the winning

agent in each round is never overbidding. □

Lemma 6.8. For any multi-round allocation mechanism that is individually rational each round and

is weakly (𝜆, 𝜇1, 𝜇2)-smooth, the same mechanism with an internalized seller is weakly (𝜆, 𝜇1, 𝜇1, 𝜇2)-
smooth before rebates.

Proof. Let𝑀 be a mechanism satisfying the conditions of the lemma, and �̂� the version with

an internalized seller. Denote by 𝑢
𝑣𝑖
𝑖
, 𝑃

𝑗

𝑖
, 𝑅

𝑗

𝑖
, 𝑋𝑖 , and 𝐵

𝑗

𝑖
the utilities, payments, rebates, allocations,

and willingness to pay in𝑀 , and let 𝑢
𝑣𝑖
𝑖
, 𝑃

𝑗

𝑖
, 𝑅

𝑗

𝑖
, 𝑋𝑖 , and �̂�

𝑗

𝑖
denote the same quantities in𝑀 with an

internalized seller. For all action profiles 𝑎,𝑢
𝑣𝑖
𝑖
(𝑎) ≥ 𝑢

𝑣𝑖
𝑖
(𝑎). By individual rationality and the fact that

�̂� redistributes to losers each round, we have

∑
𝑖 𝑃

𝑗

𝑖
(𝑎) = ∑

𝑖 𝑃
𝑗

𝑖
(𝑎)+𝑅 𝑗

𝑖
(𝑎) for all 𝑗 . Since∑𝑖 𝑅

𝑗

𝑖
(𝑎) =

0 as there are no rebates in the original mechanism,

∑
𝑖 𝑃

𝑗

𝑖
(𝑎) + 𝑅 𝑗

𝑖
(𝑎) = ∑

𝑖 𝑃
𝑗

𝑖
(𝑎) + 𝑅 𝑗

𝑖
(𝑎).Although

the presence of internalized sellers doesn’t affect payments into the mechanism, it does affect the

net payments by reducing your payments through rebates; however, by adding back the rebates

when calculating an agents willingness to pay we get that 𝐵
𝑗

𝑖
(𝑎) = �̂�

𝑗

𝑖
(𝑎) □

6.2 Bayesian Extension
A mechanism that is smooth before rebates trades off revenue and rebates against bidder utilities

for any fixed pair of value and action profiles. This extends to a Bayesian tradeoff as well. We

assume the mechanism gives agents the option to withdraw (e.g. by bidding 0) and receive 0 utility.

Lemma 6.9. If an individually rationalmechanismM with an internalized seller is weakly (𝜆, 𝜇1, 𝜇2, 𝜇3)-
smooth before rebates and agents have the option to withdraw, then if buyers have disutility for

payments satisfying 𝐶 (0) = 0 and 𝐶 ′(𝑥) ∈ [𝛼, 𝛽] for all 𝑥 , value distributions are independent across
agents, and values are nonincreasing, then the price of anarchy in Bayes-Nash equilibrium of 𝑀

satisfying no overbidding is at most (𝛼 +max(𝜇1, 𝜇2) + (𝛼 + 𝛽)𝜇3)/𝜆𝛼

Proof. Let 𝑠 be a Bayes-Nash equilibrium. For a bidder 𝑖 , consider the following “bluff” deviation
5
which lowerbounds their expected equilibrium utility: have them sample a value profile 𝑤

according to agents’ distributions, and play the deviation 𝑎∗𝑖 ((𝑣𝑖 ,𝑤−𝑖 ), 𝑠𝑖 (𝑤𝑖 )) given by smoothness

before rebates. Agent 𝑖’s expected utility from this deviation is at least:

E
𝑣,𝑤
[𝑢𝑣𝑖

𝑖
(𝑎∗𝑖 ((𝑣𝑖 ,𝑤−𝑖 ), 𝑠𝑖 (𝑤𝑖 )), 𝑠−𝑖 (𝑣−𝑖 ))] = E

𝑣,𝑤
[𝑢𝑤𝑖

𝑖
(𝑎∗𝑖 ((𝑤), 𝑠𝑖 (𝑣𝑖 )), 𝑠−𝑖 (𝑣−𝑖 ))],

5
This “bluffing” technique was first used in the proof of Theorem 4.3 in [46] for a similar result.
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where the latter equality follows from exchanging the roles of 𝑣 and𝑤 . Summing over agents:

E
𝑣,𝑤

[∑
𝑖
𝑢
𝑤𝑖

𝑖
(𝑎∗𝑖 ((𝑤), 𝑠𝑖 (𝑣𝑖 )), 𝑠−𝑖 (𝑣−𝑖 ))

]
≥ 𝜆 E

𝑣,𝑤
[OPT(𝑤)] − 𝜇1 E

𝑣,𝑤

[∑
𝑖

∑
𝑗

𝑃
𝑗

𝑖
(𝑠 (𝑣))

]
− 𝜇2 E

𝑣,𝑤

[∑
𝑖

∑
𝑗

𝑅
𝑗

𝑖
(𝑠 (𝑣))

]
− 𝜇3 E

𝑣,𝑤

[∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑠 (𝑣), 𝑋 (𝑠 (𝑣)))

]
Note that on the right side of the inequality each expectation only depends on𝑤 or 𝑣 , but not both.

For the left side, since agents are best responding in equilibrium, we obtain

E
𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
≥ 𝜆 E

𝑣
[OPT(𝑣)] − 𝜇1 E

𝑣
[
∑
𝑖

∑
𝑗

𝑃
𝑗

𝑖
(𝑠 (𝑣))] − 𝜇2 E

𝑣
[
∑
𝑖

∑
𝑗

𝑅
𝑗

𝑖
(𝑠 (𝑣))] (10)

− 𝜇3 E
𝑣
[
∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑠 (𝑣), 𝑋 (𝑠 (𝑣)))] .

The final task is to convert the above inequality into a welfare guarantee. We may write agents’

utilities as

E
𝑣
[𝑢𝑣𝑖

𝑖
(𝑠 (𝑣))] = E

𝑣

[
𝑣𝑖 · 𝑋𝑖 (𝑠 (𝑣)) −

∑
𝑗
𝐶 (𝑃 𝑗

𝑖
(𝑠 (𝑣))) .

]
With an internalized seller, we have∑

𝑖

∑
𝑗

(𝑅 𝑗

𝑖
(𝑠 (𝑣)) − 𝑃 𝑗

𝑖
(𝑠 (𝑣))) =

∑
𝑖

∑
𝑗

(𝑃 𝑗

𝑖
(𝑠 (𝑣)) + 𝑅 𝑗

𝑖
(𝑠 (𝑣)))

Since 𝛼 (𝑅 𝑗

𝑖
(𝑠 (𝑣)) − 𝑃 𝑗

𝑖
(𝑠 (𝑣))) ≤ −𝐶 (𝑅 𝑗

𝑖
(𝑠 (𝑣)) − 𝑃 𝑗

𝑖
(𝑠 (𝑣))) since (𝑅 𝑗

𝑖
(𝑠 (𝑣)) − 𝑃 𝑗

𝑖
(𝑠 (𝑣))) ≤ 0 and

individual rationality implies 𝑢𝑖 (𝑠 (𝑣)) ≥ 0 then we obtain that

E
𝑣

[∑
𝑖

∑
𝑗

(𝑃 𝑗

𝑖
(𝑠 (𝑣))+𝑅 𝑗

𝑖
(𝑠 (𝑣)))

]
≤ 𝛼−1 E

𝑣

[∑
𝑖

∑
𝑗

−𝐶 (𝑅 𝑗

𝑖
(𝑠 (𝑣))−𝑃 𝑗

𝑖
(𝑠 (𝑣)))

]
≤ 𝛼−1 E

𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
.

thus ∑
𝑖

∑
𝑗

𝑃
𝑗

𝑖
(𝑠 (𝑣)) +

∑
𝑖

∑
𝑗

𝑅
𝑗

𝑖
(𝑠 (𝑣)) ≤ 𝛼−1 E

𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
. (11)

Now we bound the welfare contributions from willingness-to-pay. Since no overbidding implies

that

E
𝑣

[∑
𝑗

𝐵
𝑗

𝑖
(𝑠 (𝑣), 𝑋𝑖 (𝑠 (𝑣)))

]
≤ E𝑣 [𝑣𝑖 · 𝑋𝑖 (𝑠 (𝑣))]

we get that

E
𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
= E

𝑣

[∑
𝑖

𝑣𝑖 · 𝑋𝑖 (𝑠 (𝑣)) −
∑
𝑗

𝐶 (𝑃 𝑗

𝑖
(𝑠 (𝑣))).

]
≥ E

𝑣

[∑
𝑖

∑
𝑗
𝐵
𝑗

𝑖
(𝑠 (𝑣), 𝑋𝑖 (𝑠 (𝑣))) −

∑
𝑗
𝐶 (𝑃 𝑗

𝑖
(𝑠 (𝑣))).

]
E
𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
≥ E

𝑣

[∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑠 (𝑣), 𝑋𝑖 (𝑠 (𝑣)))

]
− E

𝑣

[∑
𝑖

∑
𝑗

𝐶 (𝑃 𝑗

𝑖
(𝑠 (𝑣)) + 𝑅 𝑗

𝑖
(𝑠 (𝑣)))

]
E
𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
≥ E

𝑣

[∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑠 (𝑣), 𝑋𝑖 (𝑠 (𝑣)))

]
− 𝛽 E

𝑣

[∑
𝑖

∑
𝑗

𝑃
𝑗

𝑖
(𝑠 (𝑣)) + 𝑅 𝑗

𝑖
(𝑠 (𝑣))

]
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By the inequality (11)

E
𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
≥ E

𝑣

[∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑠 (𝑣), 𝑋𝑖 (𝑠 (𝑣)))

]
− 𝛽/𝛼 E

𝑣

[
𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
(1 + 𝛽/𝛼) E

𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
≥ E

𝑣

[∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑎𝑖 , 𝑋𝑖 (𝑎))

]
Note that max(𝜇1, 𝜇2)𝑃 𝑗

𝑖
(𝑠 (𝑣)) +𝑚𝑎𝑥 (𝜇1, 𝜇2)𝑅 𝑗

𝑖
(𝑠 (𝑣)) ≥ 𝜇1𝑃

𝑗

𝑖
(𝑠 (𝑣)) + 𝜇2𝑅 𝑗

𝑖
(𝑠 (𝑣)). So equation (10)

becomes

E
𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
≥ 𝜆 E

𝑣
[OPT(𝑣)] −max(𝜇1, 𝜇2)/𝛼 E

𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
−𝜇3 (1+𝛽/𝛼) E

𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
(𝛼 +max(𝜇1, 𝜇2) + (𝛼 + 𝛽)𝜇3)/𝛼 E

𝑣

[∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
≥ 𝜆 E

𝑣
[OPT(𝑣)]

Thus,

(𝛼 +max(𝜇1, 𝜇2) + (𝛼 + 𝛽)𝜇3)/𝜆𝛼 ≥ E
𝑣

[
OPT(𝑣)∑
𝑖 𝑢

𝑣𝑖
𝑖
(𝑠 (𝑣))

]
□

7 ROUND-ROBIN COMPOSITION
We now reduce the problem of designing a smooth rosca to the much simpler task of designing

smooth single-item auctions. In the standard formulation of Syrgkanis and Tardos [46], smooth

mechanisms are closed under sequential composition with unit-demand agents. In other words, if

𝑚 items are sold sequentially, and each item is sold with a mechanism which is smooth in isolation,

then the composite mechanism will also be smooth. Roscas have a similar structure, with the key

difference that agents who have won in earlier rounds are ineligible in later rounds. This difference

imposes a surprising obstacle, and rules out a generalization of Syrgkanis and Tardos [46]. However

under certain assumptions on agents preferences across time we are able to obtain an extension

theorem.

We first define composition for roscas. A rosca’s pot allocation procedure for a given round is

typically a single-item auction, given by 𝑀 , with action space A = ×A𝑖 , allocation rule 𝑋 , and

payment rule 𝑃 . We assume𝑀 has a “withdraw” action ⊥ which guarantees agents nonpositive

payments. We allow ⊥ to induce negative payments, as we allow mechanisms with an internalized

seller, where winners’ payments are redistributed to losers. A rosca can then be thought of as 𝑛

copies of𝑀 composed in the following sense.

Definition 7.1 (Round-Robin Composition). Given single-item auction𝑀 = (A, 𝑋, 𝑃) with𝑛 agents,

the 𝑛-item round-robin composition of𝑀 is a multi-round allocation mechanism for 𝑛 items using

the following procedure. Each round 𝑗 , agents submit actions 𝑎 𝑗 = (𝑎 𝑗
1
, . . . , 𝑎

𝑗
𝑛). The mechanism

sets 𝑎
𝑗

𝑖
= 𝑎

𝑗

𝑖
for any 𝑖 who have not yet won an item, and 𝑎

𝑗

𝑖
= ⊥ for all 𝑖 who have won an item

previously. The mechanism then allocates item 𝑗 to agents according to𝑀 applied to 𝑎 𝑗 and assigns

payments for round 𝑗 accordingly.

We assume agents can condition their round 𝑗 actions on play and outcomes in rounds 1, . . . , 𝑗 −1.
A multi-round allocation mechanism that is the round-robin composition of a smooth mechanism

need not be smooth itself, due to two factors. First, agents can condition their actions on past play,

and hence a small change in an agent’s early bids might induce arbitrary behavior later. Second,

there are action profiles where agents might have high value for later items, but win in early

rounds. Smoothness deviations in these circumstances may not exist, as the following example

demonstrates.
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Example 7.2. Consider a two-round, two-agent rosca with pots allocated by first-price auction.

Values will be 𝑣1 = (0, 1) and 𝑣2 = (0, 0). Actions are contingency plans over bids. Our action profile

𝑎 will be he following: agent 1 bids 𝜖 in round 1 and 0 in round 2. Agent 2 bids 0 in round 1, and

then conditions their round 2 bid on agent 1’s round 1 behavior. If agent 1 bids 𝜖 in round 1, agent

2 bids 0 in round 2. Otherwise, agent 2 bids an arbitrarily large number Ω. Agent 1 does not have
a smoothness deviation that earns them any utility, and the revenue from 𝑎 is negligible. Hence,

smoothness is not preserved under round-robin composition with general values.

Definition 7.3 (Nonincreasing Values). For a multi-round allocation setting, let 𝑥
𝑗

𝑖
denote the

allocation where agent 𝑖 wins in round 𝑗 and loses in all other rounds. A value function 𝑣𝑖 in a

multi-round allocation setting is nonincreasing with time if 𝑣𝑖 (𝑥 𝑗

𝑖
) ≤ 𝑣𝑖 (𝑥 𝑗 ′

𝑖
) for all 𝑗 > 𝑗 ′.

Non-increasing values capture the idea that all things equal agents would rather receive the pot

earlier than later.In roscas, an agent 𝑖’s value 𝑣
𝑗

𝑖
for winning the pot in round 𝑗 is their total income

stream in subsequent rounds,

∑𝑛
𝑘=𝑗

𝜉𝑘𝑖 . Consequently, 𝑣
𝑗

𝑖
is nonincreasing in 𝑗 . Nonincreasing values

allows us to prove the round robin composition property of smoothness, with loss in the smoothness

parameters. We obtain:

Theorem 7.4. Let𝑀 be a weakly (𝜆, 𝜇1, 𝜇2, 𝜇3)-smooth before rebates, individually rational single-

item mechanism. Then if agents’ values are nonincreasing with time, then the round-robin composition

is weakly (min(1, 𝜆), 1 + 𝜇1, 1 + 𝜇2, 𝜇3)-smooth before rebates.

The proof uses the smoothness deviations for the single-item mechanism to explicitly construct

deviations for the composition, using a similar strategy to the proof of Lemma A.1.

Proof. For an 𝑛-item setting, an optimal allocation given value profile 𝑣 is an assignment from

agents 𝑖 to items 𝑗∗𝑖 . For values 𝑣 and action profile 𝑎, we construct a deviation a∗𝑖 (𝑣, 𝑎𝑖 ) for each
agent 𝑖 in the following way. Agent 𝑖 simulates their equilibrium strategy up until round 𝑗∗𝑖 − 1
and then in 𝑗∗𝑖 they play their smoothness deviation for 𝑀 on value profile 𝑣 and action 𝑎

𝑗

𝑖
for 𝑖 ,

where 𝑣𝑖 = 𝑣
𝑗

𝑖
and 0 for all other agents. They withdraw in all subsequent rounds. If, in simulating

𝑎𝑖 , agent 𝑖 wins in some round 𝑗𝑖 ≤ 𝑗∗𝑖 they similarly withdraw in all subsequent rounds, and do

not play their smoothness deviation at 𝑗∗𝑖 .
Let 𝑆EQ denote the set of agents whose deviations cause them to win before 𝑗∗𝑖 and let 𝑆OPT

denote the set of agents who don’t win before 𝑗∗𝑖 hence are able to play their smoothness deviation

in round 𝑗∗𝑖 . For agents in 𝑆OPT, the choice of smoothness deviation for round 𝑗∗𝑖 implies:

𝑢
𝑣𝑖
𝑖
(a∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ 𝜆 · 𝑣 𝑗

∗
𝑖

𝑖
− 𝜇1

∑
𝑖

𝑃
𝑗∗𝑖
𝑖
(𝑎) − 𝜇2

∑
𝑖

𝑅
𝑗∗𝑖
𝑖
(𝑎) − 𝜇3

∑
𝑖

𝐵
𝑗∗𝑖
𝑘
(𝑎𝑖 , 𝑋𝑖 (𝑎)),

For agents in 𝑆EQ if 𝑗𝑖 denotes the round they actually win in then

𝑢
𝑣𝑖
𝑖
(a∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) + 𝑃

𝑗𝑖
𝑖
(𝑎) + 𝑅 𝑗𝑖

𝑖
(𝑎) ≥ 𝑣𝑖 (𝑥 𝑗𝑖

𝑖
) ≥ 𝑣𝑖 (𝑥

𝑗∗𝑖
𝑖
),

where the first inequality follows from the fact that 𝑖’s utility and payment in round 𝑗𝑖 sum to

𝑣𝑖 (𝑥 𝑗𝑖
𝑖
) and they get 0 rebates as a winner, and the second from the nonincreasing values property.

Summing over agents, we obtain:∑
𝑖∈𝑆OPT

[
𝑢
𝑣𝑖
𝑖
(a∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) + 𝜇1

∑
𝑘

𝑃
𝑗∗𝑖
𝑘
(𝑎) + 𝜇2

∑
𝑘

𝑅
𝑗∗𝑖
𝑘
(𝑎) + 𝜇3

∑
𝑘

𝐵
𝑗∗𝑖
𝑘
(𝑎𝑖 , 𝑋𝑖 (𝑎)))

]
+

∑
𝑖∈𝑆EQ

[
𝑢
𝑣𝑖
𝑖
(a∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) + 𝑃

𝑗𝑖
𝑖
(𝑎) + 𝑅 𝑗𝑖

𝑖
(𝑎)

]
≥ min(1, 𝜆)OPT(𝑣).
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Furthermore, we have that both of:∑
𝑖∈𝑆OPT

∑
𝑘

𝑃
𝑗∗𝑖
𝑘
(𝑎) and

∑
𝑖∈𝑆EQ

𝑃
𝑗𝑖
𝑘
(𝑎)

are at most

∑
𝑖

∑
𝑗 𝑃

𝑗

𝑖
(𝑎) ∑

𝑖∈𝑆OPT

∑
𝑘

𝑅
𝑗∗𝑖
𝑘
(𝑎) and

∑
𝑖∈𝑆EQ

𝑅
𝑗𝑖
𝑘
(𝑎)

are at most

∑
𝑖

∑
𝑗 𝑅

𝑗

𝑖
(𝑎) and that∑

𝑖∈𝑆OPT

∑
𝑘

𝐵
𝑗∗𝑖
𝑘
(𝑎𝑖 , 𝑋𝑖 (𝑎)) ≤

∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑎𝑖 , 𝑋𝑖 (𝑎))

Substituting these upper bounds and recalling that 𝑆OPT and 𝑆EQ partition the set of agents we get

𝑢
𝑣𝑖
𝑖
(a∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ min(1, 𝜆)OPT(𝑣)−(1+𝜇1)

∑
𝑖

∑
𝑗

𝑃
𝑗

𝑖
(𝑎)−(1+𝜇2)

∑
𝑖

∑
𝑗

𝑅
𝑗

𝑖
(𝑎)−𝜇3

∑
𝑖

∑
𝑗

𝐵
𝑗

𝑖
(𝑎𝑖 , 𝑋𝑖 (𝑎))

□

8 ROBUST WELFARE IN ROSCAS
We now combine the pieces developed in the previous sections to show two sets of welfare

guarantees in roscas. First, we give a general result: reasonable (i.e. smooth) single-itemmechanisms

make approximately-optimal roscas. Second, we give a specific guarantees for first-price/descending-

price and second-price/descending-price roscas by analyzing the single-item mechanism without

an internalized seller and applying the general result.

Theorem 8.1. Let𝑀 be an individually rational single-item auction which is weakly (𝜆, 𝜇1, 𝜇2)-
smooth when 𝐶 satisfies 𝐶 (0) = 0 and 𝐶 ′(𝑥) ∈ [𝛼, 𝛽]. If values are nonincreasing and value distri-

butions are independent across agents the 𝑛-round round-robin sequential composition of𝑀 with an

internalized seller has price of anarchy at most

1 + 𝛼 + 𝜇1 + (𝛼 + 𝛽)𝜇2
𝛼 min(1, 𝜆)

in any Bayes-Nash equilibrium without overpayment.

Proof. Because 𝑀 is weakly (𝜆, 𝜇1, 𝜇2)-smooth with quasilinear bidders, Lemma 6.8 implies

that with an internalized seller, it is also weakly (𝜆, 𝜇1, 𝜇1, 𝜇2)-smooth before rebates, still with

quasilinear bidders. Furthermore, Theorem 7.4 implies that the round robin composition of 𝑀 is

also (min(1, 𝜆), 1 + 𝜇1, 1 + 𝜇1, 𝜇2)-smooth before rebates with quasilinear bidders. The Bayesian

extension of Lemma 6.9 then implies that the price of anarchy of the mechanism is at most

(𝛼 +max(1 + 𝜇1, 1 + 𝜇1) + (𝛼 + 𝛽)𝜇2)/𝛼 min(1, 𝜆) □

Welfare in First-Price Roscas
A first-price rosca proceeds in the following way. Each round 𝑗 , agents 𝑖 who have not yet won

an item submit sealed bids 𝑏
𝑗

𝑖
. The highest bidder wins the item and is charged the highest bid

𝑏 (1) . Importantly, losers are rebated 𝑏 (1)/(𝑛 − 1). To give a welfare guarantee for the first-price

rosca by Theorem 8.1, we only need to consider just the single-item first-price auction without an

internalized seller. However, smoothness guarantees from existing work only hold for quasilinear

agents. We adapt the standard bound as follows:

Lemma 8.2. The single-item first price auction is ((1 − 1/𝑒𝛽 )𝛽−1, 1)-smooth with convex disutility

for payments if 𝐶 ′(𝑥) ≤ 𝛽 , 𝐶 (0) = 0.
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Proof. We generalize the deviation from [46]. The highest valued agent, say index ℎ, can deviate

to submitting a randomized bid 𝑏 ′
ℎ
drawn from the distribution with density function 𝑓 (𝑥) = 1

𝑣ℎ−𝛽 ·𝑥
and support [0, (1 − 1/𝑒𝛽 )𝑣ℎ/𝛽]. The utility of the highest bidder from this deviation is:

𝑢
𝑣ℎ
ℎ
(𝑏 ′

ℎ
, 𝑏−ℎ) ≥

∫ (
1− 1

𝑒𝛽

)
𝑣ℎ
𝛽

max𝑖≠ℎ 𝑏𝑖

(𝑣ℎ −𝐶 (𝑥)) 𝑓 (𝑥)𝑑𝑥

≥
∫ (

1− 1

𝑒𝛽

)
𝑣ℎ
𝛽

max𝑖≠ℎ 𝑏𝑖

(𝑣ℎ − 𝛽 · 𝑥) 𝑓 (𝑥)𝑑𝑥

≥
(
1 − 1

𝑒𝛽

)
𝑣ℎ

𝛽
−max

𝑖
𝑏𝑖 .

Since the expected revenue is at least max𝑖 𝑏𝑖 , OPT(𝑣) = 𝑣ℎ and the utilities and payments from all

other agents are nonnegative the result follows. □

Applying Theorem 8.1, we obtain:

Corollary 8.3. If values are nonincreasing, the first-price rosca has price of anarchy at most

(𝛼 + 2)𝛽
𝛼

(
𝑒𝛽

𝑒𝛽 − 1

)
in any Bayes-Nash equilibrium without overpayment.

With quasilinear agents, 𝐶 (𝑥) = 𝑥 for all 𝑥 , and Corollary 8.3 yields a price of anarchy of

3𝑒/(𝑒−1) ≈ 4.75. The guarantee degrades smoothly as agents’ utilities become less linear in wealth.

Welfare in Second-Price Roscas
A second-price rosca proceeds in the following way. Each round 𝑗 , agents 𝑖 who have not yet won

an item submit sealed bids 𝑏
𝑗

𝑖
. The highest bidder wins the item and is charged the second-highest

bid 𝑏 (2) . Importantly, losers are rebated 𝑏 (2)/(𝑛 − 1). We can also give guarantees for second-price

roscas. As before, by Theorem 8.1, we need not consider more than one item or an internalized

seller.

Lemma 8.4. The single-item second-price auction is weakly (1, 0, 1)-smooth with convex disutility

for payments if 𝛼 ≤ 𝐶 ′(𝑥) ≤ 𝛽 , 𝐶 (0) = 0 and under no overbidding.

Proof. Let 𝑣ℎ be the value of the highest bidder ℎ. Then ℎ can play a deviation 𝑏 ′
ℎ
= 𝑣ℎ/𝛼 .

Case 1. If ℎ wins with 𝑏 ′
ℎ
then

𝑢
𝑣ℎ
ℎ
(𝑏 ′

ℎ
, 𝑏−ℎ) = 𝑣ℎ −𝐶 (𝑏 (2) )

𝑢
𝑣ℎ
ℎ
(𝑏 ′

ℎ
, 𝑏−ℎ) ≥ 𝑣ℎ − 𝐵 (2)

(
𝑏 (2) , 𝑋 (2) (𝑏)

)
by definition
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Case 2. If ℎ loses with 𝑏 ′
ℎ
then

𝑏 (2) ≥ 𝑣ℎ/𝛼
𝐶 (𝑏 (2) ) ≥ 𝐶 (𝑣ℎ/𝛼) by monotonicity of 𝐶

𝐶 (𝑏 (2) ) ≥ 𝑣ℎ since 𝐶 (𝑥) ≥ 𝛼𝑥 when 𝑥 ≥ 0

𝐵 (2) (𝑏 (2) , 𝑋 (2) (𝑏)) ≥ 𝑣ℎ by definition

𝑢
𝑣ℎ
ℎ
(𝑏 ′

ℎ
, 𝑏−ℎ) ≥ 𝑣ℎ − 𝐵 (2) (𝑏 (2) , 𝑋 (2) (𝑏)) since utilities are nonnegative

These are the only two cases, so since OPT(𝑣) = 𝑣ℎ and since the utilities and willingness-to-pay

from all other agents are nonnegative the result follows. □

Applying Theorem 8.1, we obtain:

Corollary 8.5. If values are nonincreasing and assuming no overbidding, the second-price rosca

has price of anarchy at most

2 + 1 + 𝛽
𝛼

in any Bayes-Nash equilibrium without overbidding.

With quasilinear agents, 𝐶 (𝑥) = 𝑥 for all 𝑥 , and Corollary 8.5 yields a price of anarchy of 3.

The guarantee degrades smoothly as agents’ utilities become less linear in wealth. A direct proof

for a price of anarchy bound of 1 + 2𝛽/𝛼 for second-price roscas appeared in an earlier version

of this work see Theorem A.2 in Appendix A.1 for this proof. However, the theory developed

for weakly smooth mechanisms, like the second-price auction, in this paper allows us to prove a

comparable constant-factor
6
approximation with significantly less work than that done for the

proof of Theorem A.2.

9 DISCUSSION AND CONCLUSION
This work derives welfare guarantees for roscas which are robust in two senses: they are agnostic

to the precise choice of value distributions and equilibria for those distributions, and they permit

a variety of pot allocation protocols. This gives evidence that roscas can effectively coordinate

joint saving by agents with investment opportunities which vary across time and between agents.

The result provides further explanation for their wide use across many continents and more

broadly demonstrates the power of mutual aid groups, informal financial organizations and other

decentralized vehicles for community empowerment.

Our work suggests many further lines of inquiry where insights from algorithmic game theory

may improve our understanding of these important financial institutions. Our modeling decisions

focus on the ability of roscas to efficiently coordinate saving across time. Several authors have

noted that roscas can serve as insurance as well [19, 34, 35]: agents with unanticipated, urgent

financial needs can bid to obtain the pot earlier than they had planned. In general, understanding

the efficiency of roscas as agents’ values and incomes evolve stochastically over time, as well in the

presence of heterogeneous wealth, poses significant technical challenges that might benefit from a

variety of analytical perspectives.

One particular difficulty lies in the tension between allocative efficiency and wealth inequality.

That is, agents with valuable investment opportunities may not be incentivized to bid aggressively,

because low wealth causes them to value cash highly. This is particularly problematic when agents

experience income shocks, a more common occurrence for economically vulnerable individuals

6
Note these bounds agree for quasilinear bidders, but if 𝛼 < 𝛽 strictly, equivalent to𝐶 (𝑥) ≠𝑚𝑥 + 𝑏, the bound given by

Corollary 8.5 is tighter.
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[1]. One way rosca participants navigate this tension is altruism. Roscas often serve a dual role of

community-building institutions. Consequently, agents tend to observe signals about each others

shocks, and act with mutual aid in mind [36], [38]. Characterizing the way these phenomena

interact, through game-theoretic, network science, or other approaches, seems key to building a

broader theory for understanding how people self-organize to create opportunity.
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APPENDIX
A OMITTED PROOFS AND RESULTS
A.1 Welfare in Second-Price Roscas
Our analysis will proceed in the spirit of the weak smoothness framework of [46]: for each bidder,

we will construct a deviation strategy which exhibits a tradeoff between their utility and the bids

of other agents in the auction. Our tradeoff will hold in every deterministic profile of actions and

for every value profile. We then show how to extend the deviation to derive a welfare result in

Bayes-Nash equilibrium. In what follows, recall that actions in a rosca are contingency plans over

bids 𝑏
𝑗

𝑖
in each round.

Lemma A.1. For any value profile 𝑣 and action profile 𝑎 of a second-price rosca, there exists a

deviation action 𝑎∗𝑖 (𝑣, 𝑎𝑖 ) for each agent 𝑖 such that the following inequality holds:∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑎∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ OPT(𝑣) − 2

∑
𝑗

𝐶
(
𝑏
𝑗

(1)
)
, (12)

where 𝑏
𝑗

(1) denotes the highest in round 𝑗 under action profile 𝑎.

The proof will emulate the closure of smooth mechanisms under simultaneous composition in

[46]: we will have each agent 𝑖 emulate their strategy 𝑎𝑖 until the item they would win in the optimal

assignment, then target the item they would win in the optimal assignment. A key distinction is that

if 𝑖 wins before their targeted round, they are disqualified from future rounds. Under nonincreasing

values, we show that this doesn’t hurt much.

Proof. An optimal allocation given value profile 𝑣 is an assignment from agents 𝑖 to items 𝑗∗𝑖 .
For values 𝑣 and action profile 𝑎, we construct a deviation 𝑎∗𝑖 (𝑣, 𝑎𝑖 ) for each agent 𝑖 in the following

way. Agent 𝑖 simulates their equilibrium strategy up until round 𝑗∗𝑖 − 1. In round 𝑗∗𝑖 , they bid

𝐶−1 (𝑣 𝑗
∗
𝑖

𝑖
) and then 0 in all subsequent rounds. If, in simulating 𝑎𝑖 , agent 𝑖 wins in some round 𝑗𝑖 < 𝑗∗𝑖

they similarly bid 0 in all subsequent rounds including 𝑗∗𝑖 . Let 𝑆EQ denote the set of agents whose

deviations cause them to win in some 𝑗𝑖 < 𝑗∗𝑖 , and let 𝑆OPT denote the set of agents who don’t win

before 𝑗∗𝑖 and hence are deviate in round 𝑗∗𝑖 . Note that 𝑆EQ and 𝑆OPT together partition the set of

agents.

For each agent 𝑖 ∈ 𝑆OPT, we may consider two cases, based on whether their deviation causes

them to win or lose in round 𝑗 . If they win, let 𝑖 ′ be the highest bidder other than 𝑖 . Since 𝑖 incurs

nonnegative utility outside of round 𝑗∗𝑖 , we have that 𝑢
𝑣𝑖
𝑖
(𝑎∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ 𝑣

𝑗∗𝑖
𝑖
− 𝐶 (𝑏𝑖′). We can

therefore write:

𝑢
𝑣𝑖
𝑖
(𝑎∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) +𝐶

(
𝑏
𝑗

(1)
)
≥ 𝑢

𝑣𝑖
𝑖
(𝑎∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) +𝐶 (𝑏𝑖′) ≥ 𝑣

𝑗∗𝑖
𝑖
.

If 𝑖 instead loses with their deviation in round 𝑗∗𝑖 , then we instead have 𝑏𝑖′ ≥ 𝐶−1 (𝑣 𝑗
∗
𝑖

𝑖
). Since 𝐶 is

increasing, we obtain

𝐶 (𝑏 𝑗∗𝑖
(1) ) ≥ 𝐶 (𝑏𝑖′) ≥ 𝑣

𝑗∗𝑖
𝑖
.

In either case, we have shown that for all 𝑖 ∈ 𝑆OPT,

𝑢
𝑣𝑖
𝑖
(𝑎∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ 𝑣

𝑗∗𝑖
𝑖
−𝐶

(
𝑏
𝑗∗𝑖
(1)
)
. (13)

For each agent 𝑖 ∈ 𝑆EQ, meanwhile, note that their payments are nonpositive outside round 𝑗𝑖 .

Since utility is value minus disutility for payments, we can write:

𝑢
𝑣𝑖
𝑖
(𝑎∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ 𝑣

𝑗𝑖
𝑖
−𝐶

(
𝑏
𝑗𝑖
(2)
)
≥ 𝑣

𝑗∗

𝑖
−𝐶

(
𝑏
𝑗𝑖
(1)
)
, (14)
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where the second inequality follows from the nonincreasing values assumption and the fact that

𝑏
𝑗𝑖
(1) ≥ 𝑏

𝑗𝑖
(2) .

Summing over all agents, we obtain∑
𝑖

𝑢
𝑣𝑖
𝑖
(𝑎∗𝑖 (𝑣, 𝑎𝑖 ), 𝑎−𝑖 ) ≥ OPT(𝑣) −

∑
𝑗 ∈𝑆OPT

𝐶
(
𝑏
𝑗∗𝑖
(1)
)
−

∑
𝑗 ∈𝑆EQ

𝐶
(
𝑏
𝑗𝑖
(1)
)
.

Since each round 𝑗 is 𝑗∗𝑖 for at most one agent 𝑖 and 𝑗𝑖 for at most one agent 𝑖 . we may weaken the

above inequality to obtain (12). □

We are now in a position to reason about the second-price rosca in Bayes-Nash equilibrium. The

main result of this section is the following.

Theorem A.2. Assuming no overbidding and nonincreasing values, the price of anarchy for the

second-price rosca is at most 1+2𝛽/𝛼 in Bayes-Nash equilibrium with independently distributed values

across agents.

The guarantee in Theorem A.2 depends on the shape of the disutility function 𝐶 , but degrades

smoothly away from a price of anarchy of 3 as the ratio of𝐶’s slopes varies away from 1. The proof

follows the “bluffing” template of [46]. Note that we require independence across agents, but not

across the values for a particular agent. In fact, the nonincreasing values assumption rules the latter

sort of independence out almost always.

Proof. Let 𝑠 be a Bayes-Nash equilibrium. For a bidder 𝑖 , consider the following “bluff” deviation

which lowerbounds their expected equilibrium utility: have them sample a value profile𝑤 according

to agents’ distributions, and play 𝑎∗𝑖 ((𝑣𝑖 ,𝑤−𝑖 ), 𝑠𝑖 (𝑤𝑖 )), where 𝑎∗𝑖 is as defined in Lemma A.1. We

may therefore lower bound ex ante equilibrium expected utility E𝑣 [𝑢𝑣𝑖
𝑖
(𝑠 (𝑣))] as:

E𝑣,𝑤 [𝑢𝑣𝑖
𝑖
(𝑎∗𝑖 ((𝑣𝑖 ,𝑤−𝑖 ), 𝑠𝑖 (𝑤𝑖 )), 𝑠−𝑖 (𝑣−𝑖 ))]

= 𝐸𝑣,𝑤 [𝑢𝑤𝑖

𝑖
(𝑎∗𝑖 ((𝑤), 𝑠𝑖 (𝑣𝑖 )), 𝑠−𝑖 (𝑣−𝑖 ))],

where the latter inequality follows from exchanging the roles of 𝑣 and𝑤 , which is valid because of

independence. Summing over agents and applying Lemma A.1, we have:

E𝑣,𝑤

[∑
𝑖
𝑢
𝑤𝑖

𝑖
(𝑎∗𝑖 ((𝑤), 𝑠𝑖 (𝑣𝑖 )), 𝑠−𝑖 (𝑣−𝑖 ))

]
≥ 𝐸𝑣,𝑤 [OPT(𝑤)] − 𝐸𝑣,𝑤

[
2

∑
𝑗
𝐶
(
𝑏
𝑗

(1)
) ]

≥ 𝐸𝑣 [OPT(𝑣)] − 2𝐸𝑣
[∑

𝑖
𝑣𝑖 · 𝑋𝑖 (𝑠 (𝑣))

]
(15)

where the second inequality follows from the no-overbidding assumption, and the third from the

fact that payments are redistributed.

To obtain a welfare bound, note that expected utilities can be written as

𝐸𝑣 [𝑢𝑣𝑖
𝑖
(𝑠 (𝑣))] = 𝐸𝑣

[
𝑣𝑖 · 𝑋𝑖 (𝑠 (𝑣)) −

∑
𝑗
𝐶 (𝑃 𝑗

𝑖
(𝑠 (𝑣))) .

]
Therefore we have

𝐸𝑣
[ ∑

𝑖 𝑣𝑖 · 𝑋𝑖 (𝑠 (𝑣))
]

𝐸𝑣
[ ∑

𝑖 𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

] ≤
𝐸𝑣

[ ∑
𝑖

∑
𝑗 max(𝐶 (𝑃 𝑗

𝑖
(𝑠 (𝑣))), 0)

]
𝐸𝑣

[ ∑
𝑖

∑
𝑗 −min(𝐶 (𝑃 𝑗

𝑖
(𝑠 (𝑣))), 0)

] , (16)

obtained by subtracting 𝐸𝑣 [𝑣𝑖 · 𝑋𝑖 (𝑠 (𝑣)) −
∑

𝑗 max(𝐶 (𝑃 𝑗

𝑖
(𝑠 (𝑣))), 0).] from the numerator and de-

nominator of the lefthand side, which is nonnegative by the no overbidding assumption. With an

internalized seller, we have
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∑
𝑖

∑
𝑗

−min(𝑃 𝑗

𝑖
(𝑠 (𝑣)), 0) =

∑
𝑖

∑
𝑗

max(𝑃 𝑗

𝑖
(𝑠 (𝑣)), 0).

Since 𝐶 (0) = 0 and 𝐶 ′(𝑥) ∈ [𝛼, 𝛽], the righthand side of (16) is at most 𝛽/𝛼 . Combining with

(15), we obtain:

E𝑣

[∑
𝑖
𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
≥ 𝐸𝑣 [OPT(𝑣)] − 2𝛽

𝛼
𝐸𝑣

[∑
𝑖
𝑢
𝑣𝑖
𝑖
(𝑠 (𝑣))

]
.

The result follows from rearranging. □

Note that for dynamic games under incomplete information as in our model, the usual equiva-

lence of equilibria between sealed-bid and ascending-price mechanisms does not necessarily hold.

However, the proof of Theorem A.2 remains valid, because of its reliance on deviation bids. A

deviation in the sealed-bid version of the game corresponds to a deviation in the ascending-price

game via the usual correspondence, and the no overbidding assumption becomes an assumption

that players drop out before they would begin incurring negative utility.

A.2 No Overbidding in Strongly Smooth Mechanisms
Proof Sketch. Rebates in each round have to be less than𝐶−1 (𝑣𝑤𝑗

(𝑥𝑤𝑗
)) where𝑤 𝑗 denotes the

agent who won the item in round 𝑗 . Since our mechanisms are individually rational𝑤 𝑗 is the only

one making positive payments each round and thus they have to pay less than 𝐶−1 (𝑣𝑤𝑗
(𝑥𝑤𝑗
)) to

avoid negative utility. Thus if an agents is overbidding to get higher rebates in future rounds this

only works if their overbid causes them to win in strongly smooth mechanisms but as we showed

earlier the winning agent in each round is never overbidding. □

B LINEAR PROGRAMMING FOR AFTER-MARKET
This is the linear program used to construct worst case examples for swap-stable assignments with

non-increasing values.

maximize

𝑛∑
𝑖=1

𝑣𝑖𝑖 −
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑣𝑖 𝑗

subject to

𝑛∑
𝑖=1

𝑣𝑖𝑖 ≥
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑎𝑖 𝑗𝑣𝑖 𝑗 , 𝑖 = 1, . . . , 𝑛

𝑣𝑖 𝑗 ≥ 𝑣𝑖 𝑗 ′, if 𝑗 < 𝑗 ′,∀𝑖 ∈ 1, . . . , 𝑛
𝑎𝑖 𝑗𝑣𝑖 𝑗 + 𝑎𝑖′ 𝑗 ′𝑣𝑖′ 𝑗 ′ ≥ 𝑎𝑖 𝑗𝑣𝑖 𝑗 ′ + 𝑎𝑖′ 𝑗 ′𝑣𝑖′ 𝑗 , ∀𝑖, 𝑗, 𝑖 ′, 𝑗 ′ ∈ 1, . . . , 𝑛 if 𝑎𝑖 𝑗 , 𝑎𝑖′ 𝑗 ′ ≥ 1

𝑣𝑖 𝑗 ≤ 1 ∀𝑖, 𝑗
𝑣𝑖 𝑗 ≥ 0 ∀𝑖, 𝑗

• 𝑣𝑖 𝑗 are the LP decision variables, and are person 𝑖’s value for getting assigned position 𝑗

• 𝑎𝑖 𝑗 are constant indicators for whether person 𝑖 is assigned position 𝑗

The python implementation using Gurobi [29] for the 𝑥 (1) = 3, 𝑥 (2) = 1, 𝑥 (3) = 2 swap-stable

assignment is displayed on the following pages.
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Rosca Mechanism Quasilinear POA Bound Concave POA Bound

First-Price Rosca 3𝑒/(𝑒 − 1) (𝛼+2)𝛽
𝛼

(
𝑒𝛽

𝑒𝛽−1

)
Second-Price Rosca 3 2 + 1+𝛽

𝛼

Random Rosca 1/𝑛 n/a

Random Rosca with After-Market 2 n/a

(𝜆, 𝜇1, 𝜇2)-Smooth Rosca
2+𝜇1+2𝜇2
min(1,𝜆)

1+𝛼+𝜇1+(𝛼+𝛽)𝜇2
𝛼 min(1,𝜆)
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