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Abstract

Rotating savings and credit associations (roscas) are informal
financial organizations common in settings where communi-
ties have reduced access to formal financial institutions. In a
rosca, a fixed group of participants regularly contribute sums
of money to a pot. This pot is then allocated periodically us-
ing lottery, aftermarket, or auction mechanisms. Roscas are
empirically well-studied in economics. They are, however,
challenging to study theoretically due to their dynamic na-
ture. Typical economic analyses of roscas stop at coarse or-
dinal welfare comparisons to other credit allocation mecha-
nisms, leaving much of roscas’ ubiquity unexplained. In this
work, we take an algorithmic perspective on the study of
roscas. Building on techniques from the price of anarchy liter-
ature, we present worst-case welfare approximation guaran-
tees. We further experimentally compare the welfare of out-
comes as key features of the environment vary. These cardinal
welfare analyses further rationalize the prevalence of roscas.
We conclude by discussing several other promising avenues.

1 Introduction
Rotating saving and credit associations (roscas) are financial
institutions common in low- and middle-income nations, as
well as immigrant and refugee populations around the world.
In a rosca, a group of individuals meet regularly for a defined
period of time. At each meeting, members contribute a sum
of money into a pot, which is then allocated via some mech-
anism, such as a lottery or an auction. Recipients often use
this money to purchase durable goods (e.g., farming equip-
ment, appliances, and vehicles), to buffer shocks (e.g. an un-
expected medical expense), or to pay off loans. Roscas often
exist outside of legal frameworks and do not typically have a
central authority to resolve disputes or enforce compliance.
Instead, they provide a decentralized mechanism for peer-
to-peer lending, where members who receive the pot earlier
borrow from those who receive it later. They also create a
structure for mutual support and community empowerment.

Roscas are used in over 85 countries and are espe-
cially prevalent in contexts where communities have re-
duced access to formal financial institutions (Aredo 2004;
Bouman 1995a; Klonner 2002; La Ferrara 2002; Raccanello
and Anand 2009). Roscas account for about one-half of
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Cameroon’s national savings. Likewise, over one in six
households in Ethiopia’s highlands participate in ekub, the
region’s variant of roscas Bouman (1995a). Due to their abil-
ity to provide quick, targeted support within communities,
roscas and other mutual aid organizations often play an in-
strumental role when communities experience shocks and
disasters (Chevée 2021; Mesch et al. 2020; Travlou 2020).

Roscas are well-studied in the economics literature, with
economic theory on the subject pioneered by Besley, Coate,
and Loury (1993); Kovsted and Lyk-Jensen (1999); Kuo
(1993) (see Appendix A for further related works). This
line of work seeks to explain how roscas act as insurance,
savings, and lending among members. While such studies
have deepened our understanding of roscas, they are typi-
cally constrained in two main ways. First, the standard eco-
nomic approach solves exactly for equilibria, which can be
especially difficult due to the dynamic nature of roscas. Sec-
ond, much of the existing theory focuses on coarse-grained
comparisons between the welfare of roscas and other mech-
anisms for allocating credit. In part due to these coarse
comparisons, this work often concludes that roscas allocate
credit suboptimally, leaving open the question of why roscas
are prevalent in practice.

In this work, we initiate an algorithmic study of roscas.
Viewing roscas through the lens of approximation and using
techniques from the price of anarchy literature, we study the
welfare properties of rosca outcomes without directly solv-
ing for them. We specifically quantify the allocative efficacy
of roscas: how well do roscas coordinate saving and lending
among participants with heterogeneous investment opportu-
nities? We show roscas enable a group’s lending and borrow-
ing in a way that approximately maximizes the groups’ total
utility. We do so under a wide range of assumptions on both
participants’ values for investment and the mechanisms used
for allocating the pots. This robustness may provide one ex-
planation for their prevalence.

Our work builds on the saving and lending formulation
of Besley, Coate, and Loury (1994). We assume each par-
ticipant seeks to purchase an investment, such as a durable
good, but can only do so upon winning the rosca’s pot.
We analyze the welfare properties of typical pot allocation
mechanisms, such as “swap roscas,” where the participants
are given an initial (e.g. random) allocation and then swap
positions in an after-market through bilateral trade agree-



ments. We also study the price of anarchy in auction-based
roscas where, during each meeting, participants bid to de-
cide a winner among those who have not yet received a pot.
During each round, participants must weigh the value of in-
vesting earlier against the utility loss from spending to win
that round.

Our technical contributions are as follows: For swap
roscas, we prove that all outcomes guarantee at most a factor
2 loss. For auction-based roscas, we give full-information
price of anarchy results: we study second-price sequential
roscas and give a price of anarchy of 3 under a standard no-
overbidding assumption. For first-price sequential roscas,
we provide a ratio of (2e + 1)e/(e − 1). Our work pro-
vides new applications of and extensions to the smoothness
framework of Syrgkanis and Tardos (2013). However, due
to the round-robin (i.e you can only win once) property of
rosca allocations and the fact that all payments are redis-
tributed to members, standard smoothness arguments do not
immediately yield bounds in our setting. Via a new sequen-
tial composition argument, we show that roscas based on
smooth mechanisms are themselves smooth, and we go be-
yond smoothness to bound the distortionary impact of redis-
tributed payments on welfare. Our above results hold under
the well-studied assumption of quasilinear utility for money.
We extend most of our theoretical results to nonlinear utility
functions, and also use simulations to consider the impact of
nonlinear utilities in several natural families of swap roscas.

Overall, this work aims to provide greater exposure for
mutual aid organizations more generally and roscas to the
algorithms community. In doing so, we present a case study
showing how algorithmic game theory can provide a useful
perspective for further understanding fundamental questions
related to these financial organizations. Given their preva-
lence and efficacy, insights into roscas can help inform the
design of other safety net programs, especially for commu-
nities that already commonly use roscas. As new technolo-
gies are introduced in low-access contexts, also, the need
to understand existing, prevalent financial organizations is
even more pressing. We close the paper with discussion of
promising research directions.

2 Model and Preliminaries
A rosca consists of n participants and takes place over n
discrete and fixed time periods, or rounds. During each
round three things occur: (1) each participant contributes an
amount p0 into the rosca common pot, (2) a winner for the
pot is decided among those who have not yet won, and (3)
the winning participant is allocated the entire pot worth np0.
Typically, the contributions p0 are decided ex ante during the
formation of the rosca. As is common in previous literature,
we will not model the selection process for p0, but instead
take it as given (c.f. Klonner 2001).

With the rosca contribution p0 fixed, we can cast roscas
as an abstract multi-round allocation problem, where every
participant is allocated exactly one pot, and each pot is al-
located to exactly one participant, illustrated in Alg 1. Each
participant’s value for the allocations is described by a real-
valued vector vi = (v1i , . . . , v

n
i ), with vti representing par-

ticipant i’s value for winning the pot in round t and having

access to that money at that time. We denote allocations by
x = (x1, . . . ,xn), where xi = (x1i , . . . , x

n
i ) is an indica-

tor vector, and xti = 1 if and only if participant i receives
the pot in round t. Based on a common observation from
previous literature, we can further assume that values for al-
location are non-increasing over time: i.e., for t < t′ and
any i, vti ≥ vt

′

i . This follows if rosca funds are used to make
lumpy investments, e.g., in a durable good, as is common
in practice (Besley, Coate, and Loury 1993, 1994; Kovsted
and Lyk-Jensen 1999; Klonner 2008). Participants prefer to
own the good earlier rather than later, though different par-
ticipants’ values for owning the good earlier may vary.

Algorithm 1: Rosca Multi-Round Allocation
Constants: n: the number of participants and rounds in the rosca.
p0: amount contributed by each participant to the pot in each round
of the rosca.
Inputs: Valuations v, where vti indicates the value to participant i
of winning the pot in round t. Alloc an allocation mechanism.

For each round t ∈ {1, 2, . . . , n}
1. Each participant contributes p0 into the pot
2. Alloc selects the winning participant (who has not yet won a

round)
3. The winning participant receives the pot worth np0

4. Optional: Some participants make payments based on Alloc,
which are redistributed to the others as rebates.

2.1 Roscas with Payments
A variety of different pot allocation mechanisms are com-
mon in practice (see Ardener 1964; Bouman 1995b). This
work considers roscas where participants make payments
to influence their allocations, and assumes as a first-order
approximation that participants are rational. Payments in
roscas take the form p = (p1, . . . ,pn), where pi =
(p1i . . . , p

n
i ). As participants’ abilities to save money over

time are typically limited, we assume participants’ utilities
are additively separable across rounds, but possibly nonlin-
ear in money. That is, participant i with value vector vi has
utility for allocation xi and payments pi given by

uvii (xi,pi) = xi · vi −
∑

t
C(pti),

for some disutility functionC that is both increasing and sat-
isfies C(0) = 0. In a given round, pti could be positive, if the
allocation mechanism requires i to make payments, or nega-
tive, if a different participant’s payments are redistributed to
i. We refer to the latter as rebates, and assume all payments
are redistributed each round, i.e.,

∑
i p
t
i = 0 for all t.

A participant who makes positive payments in round t has
less money to spend in round t, and one who receives rebates
in the form of negative payments has more to spend. The
function C(·) describes participants’ preferences for these
changes in wealth. A more precise interpretation of C(pti)
is as follows: assume that each participant i has a per-round
income of w. Without participating in the rosca, they would
receive a utility U(w) from consumption of that income, for



some increasing consumption utility function U . Upon con-
tributing p0 into the rosca pot each round, the participant’s
baseline consumption utility is U(w − p0). If the rosca’s
allocation procedure requires additional payments (or dis-
tributes rebates) of pti, a participant’s utility from consump-
tion becomes U(w−p0−pti). The disutility function C then
represents the participant’s difference in utility for consump-
tion,

C(p) = U(w − p0)− U(w − p0 − p),
which is increasing.

A large body of anthropological and empirical work on
roscas shows that participants in the same rosca tend to have
similar economic circumstances (see Ardener 1964; Aredo
2004; Mequanent 1996). So, following the theory literature,
we assume U and w (and hence C) are identical across par-
ticipants, even if the value for receiving the pot differ be-
tween participants (Besley, Coate, and Loury 1994; Kovsted
and Lyk-Jensen 1999; Klonner 2001). It is typical to as-
sume consumption utility U is weakly concave, and hence
C is weakly convex (Anderson and Baland 2002; Klon-
ner 2003b, 2001). The special case of quasilinear utilities,
where C(p) = p, is especially well-studied in the algorith-
mic game theory literature.

To measure allocative performance of a rosca, we study
the participants’ total utility:

WELv(x,p) =
∑

i
uvii (xi,pi).

Following the interpretation of C in terms of consumption
utility U , WELv(x,p) represents the gain in utility to all
participants for a given allocation x and payments p, above
the baseline total utility of n2U(w − p0), obtained by each
of the n participants obtaining utility U(w − p0) for n
rounds. Among all possible matchings x and payment pro-
files p ∈ Rn×n, the optimal welfare-outcome is given by
the maximum-weight matching x∗ = argmaxx

∑
i xi · vi

and payments p∗ = (0, . . . , 0), whose welfare is denoted
OPT(v) = WELv(x∗,p∗).

To quantify the inefficiency of a rosca outcome (x,p), we
study the approximation ratio OPT(v)/WELv(x,p). When
rosca outcomes are equilibria of auctions, as in Section 3,
this ratio is also known as the price of anarchy (PoA).

Roadmap. The remainder of this paper proceeds as follows:
In Section 3, we prove a constant-approximation for auction
roscas. We do the same for swap roscas in Section 4. Both
sets of results focus on quasilinear utilities, whereC(p) = p,
and hence all welfare loss comes from allocative ineffi-
ciency. We extend these results to nonlinear utilities in the
supplement. In Section 4, we further conduct experiments to
study the impact of nonlinear utility on swap rosca welfare.
We give directions for future work in Section 5.

3 Auction Roscas
Auctions are a common mechanism for allocating pots in
roscas (Ardener 1964; Bouman 1995a; Klonner 2003a). Two
major sources of variety in auction roscas are (1) when bids
are solicited from participants and (2) the type of auction run
for the bidding process. The bidding may occur either at the

beginning, in which case a single (up-front) auction deter-
mines the full schedule of pot allocations, or sequentially, in
which case a separate auction is held each period to deter-
mine the allocation for the corresponding pot. We consider
sequential first- and second-price (equivalently, ascending-
and descending-price) auctions, as well as up-front all-pay-
style auctions. Payments are typically redistributed as re-
bates among all of the non-winning participants.

The fact that outcomes depend on participants’ bidding
behavior complicates our analysis. We assume participants
play a Nash equilibrium (NE) of the rosca’s auction game.
That is, their bidding strategy maximizes their utility given
the bidding strategies of other participants. Our analysis
will use the smoothness framework of Syrgkanis and Tardos
(2013), along with new arguments to handle rosca-specific
obstacles. We assume participants have quasilinear utilities.

3.1 Proof Template: Up-Front Roscas
We begin our analysis by considering roscas with up-front
bidding. In an up-front rosca, each participant i submits a
bid bi at the beginning of the rosca. Participants pay their
bids, and are then assigned pots in decreasing order of their
bids, with the highest participant receiving the pot in round
1, and so on. Each participant i’s payments are redistributed
evenly among the other participants in the form of reduced
per-period payments into the rosca. Under quasilinear utili-
ties, it is not relevant to the participants’ utilities what round
payments are made; the only relevant outcome is total pay-
ments, which we write as pi =

∑
t p
t
i when context allows.

We can further assume per-period payments remain fixed
and that the participants receive the redistributed payments
up-front in the form of a rebate. We decompose the partic-
ipants’ total payments into their gross payments p̂i and re-
bates r̂i, with pi = p̂i − r̂i. Formally:

Definition 1. In an up-front rosca with quasilinear par-
ticipants, each participant i submits a bid bi, with b =
(b1, . . . , bn). Let ri denote the rank of participant i’s bid.
Allocations are xti(b) = 1 if t = ri and 0 otherwise. Par-
ticipant i’s gross payment is p̂i(b) = bi, and their rebate is
r̂i(b) =

∑
i′ 6=i bi′/(n− 1).

Our auction rosca analyses all follow from a two-step ar-
gument. First, we use or modify the smoothness framework
of Syrgkanis and Tardos (2013) to obtain a tradeoff between
participants’ utilities and their gross payments. Without re-
bates, typical auction analyses conclude by noting that high
payments imply high welfare. However, because gross pay-
ments in roscas are redistributed, it could happen that both
gross payments and rebates are high, but welfare is low. Our
second step is to rule out this problem. For up-front roscas,
we can demonstrate both steps simply.

The first step follows from Lemma A.20 of Syrgkanis and
Tardos (2013):

Lemma 1. With quasilinear participants, any Nash equilib-
rium b of any up-front rosca with values v satisfies∑

i
uvii (b) ≥ 1

2OPT(v)−
∑

i
p̂i(b). (1)

The left hand side of (1) is the equilibrium welfare. It



therefore suffices for the second step to upper bound the
gross payments on the right hand side.

Lemma 2. Let b be a Nash equilibrium of an up-front rosca
with quasilinear participants and values v. Then, for any
participant i, p̂i(b) ≤ vi · xi(b).

Proof. Assume for some i that p̂i(b) > vi · xi(b). Then
participant i must be overbidding. They could improve their
utility by bidding 0, which, in an up-front rosca, does not
change their rebates: r̂i(0,b−i) = r̂i(b) > vi · xi(b) −
p̂i(b) + r̂i(b).

Since
∑
i vi · xi(b) is equal to the equilibrium welfare,

Lemmas 1 and 2 together imply the following.

Theorem 1. With quasilinear participants, every Nash equi-
librium of an up-front rosca has PoA at most 4.

3.2 Sequential Roscas
We now consider roscas with separate sequentially-held
first- or second-price auctions for each pot as opposed to
the single-auction format from the previous section.

Definition 2. A first-price rosca runs a first-price auction in
each round.

That is, if the highest-bidding participant in round t
among those who have not yet won is participant i∗, with
bid bti∗ , then xti∗ = 1, xti = 0 for all other participants i.
The gross payments are p̂ti∗ = bti∗ and p̂ti = 0 otherwise.
The rebates are r̂ti = bti∗/(n− 1) for all i 6= i∗.

Definition 3. A second-price rosca runs a second-price auc-
tion in each round. That is, if the highest-bidding participant
in round t among those who have not yet won is participant
i∗, with second-highest bid bt(2), then xti∗ = 1, xti = 0 for all
other participants i. The gross payments are p̂ti∗ = bt(2) and
p̂ti = 0 otherwise. The rebates are r̂ti = bt(2)/(n− 1) for all
i 6= i∗.

Sequential auctions require a monitoring scheme in which
the auctioneer discloses information about participants’ bids
after each round. Our results will hold for any determinis-
tic monitoring scheme. A key subtlety is that participants’
actions are now behavioral strategies: that is, at each stage,
participants observe the disclosed history of play so far and
can condition their future bids on this history. We denote the
vector of behavioral strategies by a = (a1, . . . , an), and de-
note by bti participant i’s bid in a round t.

As with up-front roscas, we first derive a tradeoff be-
tween utility and gross payments, and second consider the
impact of rebates. The sequential format complicates both
steps. Our first step will follow from a novel composition
argument, where we show that both first- and second-price
roscas inherit a tradeoff from their single-item analogs. For
second-price roscas, a standard no-overbidding assumption
then bounds the auction’s rebates and implies a welfare
bound. For first-price roscas, we give a more involved anal-
ysis that bounds overbidding and yields an unconditional
guarantee. Overbidding can both occur in equilibrium and
harm welfare, so such an analysis is necessary.

Observe that, first- and second-price roscas can be thought
of as the sequential composition n single-item auctions, with
a rule excluding past winners. Formally:
Definition 4 (Round-Robin Composition). Given a single-
item auction M , the n-item round-robin composition of M
is a multi-round allocation mechanism for n items using the
following procedure: During each round t, each participant
i who has not yet been allocated an item submits a bid bti.
The mechanism then runs M among the remaining partic-
ipants to determine the allocation and payments for that
round.

The following definition of smoothness, adapted from
Syrgkanis and Tardos (2013), lets us characterize both first-
and second-price roscas with the same framework. For our
purposes, it applies to any auction where in round t, each
bidder who has not yet won submits a real-valued bid bti,
which we term sequential single-bid auctions. Note that this
includes single-item auctions. We will show that smoothness
of single-item auctions implies smoothness of their round-
robin composition.
Definition 5. Let M be a sequential single-bid auction. We
say M is (λ, µ1, µ2)-smooth if for every value profile v and
action profile a, there exists a randomized action a∗i (ai,v)
for each i such that:∑

i
(vi·xi(a∗i (ai,v),a−i)− pi(a∗i (ai,v),a−i) ≥

λOPT(v)− µ1

∑
i
p̂i(a)− µ2

∑
i
Bi(a),

where Bi(a) is i’s bid in the round where they win, or 0 if
no such round exists.

Syrgkanis and Tardos (2013) show that single-item first-
price and second-price auctions are (1 − 1/e, 1, 0)-smooth,
and (1, 0, 1)-smooth, respectively. However, the smoothness
result they prove for a form of sequential composition fails
to hold for round-robin composition, due to the cardinality
constraint on allocations as in our setting. Here, we instead
give a new composition argument tailored specifically to the
rosca setting, that relies on values decreasing in time. Our
composition result follows the following useful definition:
Definition 6. A single-item mechanism M with allocation
rule x and payments p is strongly individually rational (IR)
if (1) for every profile of actions a, xi(a) = 0 only if p̂i(a) =
0, and (2) there exists an action⊥ such that for all i and a−i,
p̂i(⊥,a−i) = 0.

Lemma 3. LetM be a strongly individually-rational single-
item mechanism. If M is (λ, µ1, µ2)-smooth for λ ≤ 1 and
µ1, µ2 ≥ 0, then its round-robin composition is (λ, µ1 +
1, µ2)-smooth as long as vti ≥ v

t+1
i for all i and t.

Our proof of this lemma, presented in the supplement,
augments the main idea from the Syrgkanis and Tardos
(2013) composition result with ideas from Kesselheim,
Kleinberg, and Tardos (2015), who consider smoothness
of non-sequential mechanisms for cardinality-constrained
allocation environments. As a corollary of Lemma 3, we
obtain that first- and second-price roscas are respectively
(1− 1/e, 2, 0) and (1, 1, 1)-smooth.



We next analyze the impact of rebates. If we assume no
participant overbids, then payments (and hence rebates) are
necessarily bounded by values, and we obtain a similar con-
clusion to Lemma 2. Moreover, we show in the supplement
that an overbidding assumption is necessary for second-
price roscas, as is often the case for auctions with second-
price payments. The overbidding assumption we require is
as follows:
Definition 7. Action profile a satisfies no-overbidding if
Bi(a) ≤ vi · xi(a) for every participant i.
Theorem 2. Let M be a strongly IR, single-item auction
that is (λ, µ1, µ2)-smooth, with λ ≤ 1. With quasilinear
participants, every no-overbidding Nash equilibrium of the
corresponding auction rosca with rebates has PoA at most
(2 + µ1 + µ2)/λ.

Proof. Lemma 3 implies that the rosca is (λ, 1 + µ1, µ2)-
smooth before rebates. We can therefore write:∑

i
uvii (a) ≥

∑
i
uvii (a∗i ,a−i)

≥
∑

i
(vi · xi(a∗i ,a−i)− p̂i(a∗i ,a−i))

≥ λOPT(v)− (1 + µ1)
∑

i
p̂i(a)

− µ2

∑
i
Bi(a)

≥ λOPT(v)− (1 + µ1 + µ2)
∑

i
Bi(a)

≥ λOPT(v)− (1 + µ1 + µ2)
∑

i
vi · xi(a)

Since both
∑
i u

vi
i (a) and

∑
i vi · xi(a) are equal to equi-

librium welfare, the result follows.

Corollary 1. For quasilinear participants, any Nash equi-
librium of the first-price rosca satisfying no-overbidding has
PoA at most 3e/(e− 1).
Corollary 2. For quasilinear participants, any Nash equi-
librium of the second-price rosca satisfying no-overbidding
has PoA at most 3.

3.3 Relaxing No-Overbidding
The no-overbidding assumption in the previous section rules
out behavior where participants overbid in early rounds to
induce others to bid high in later rounds, thereby resulting
in high rebates. When this behavior is extreme, participants’
payments could conceivably far exceed their values, which
in turn complicates the smoothness-based approach. The fol-
lowing example gives a Nash equilibrium of a first-price
rosca where overbidding leads to welfare loss.
Example 1. Consider three participants, with v1 =
(1, 0, 0), v2 = (2, 2, 0), and v3 = (2, 2, 0). The following
behavioral strategies form a Nash equilibrium. Participant
1 bids 2 in round 1. Participants 2 and 3 bid 1 in round 1.
If participant 1 bids less than 2 in round 1, participants 2
and 3 bid 0 in round 2. Otherwise, they bid 2. The optimal
welfare is then 4, but the equilibrium welfare is 3.1

1This example does not satisfy the refinement of subgame per-
fection, though our welfare guarantees do not need this restriction.

Despite the loss exhibited in Example 1, we can obtain
a constant price of anarchy for first-price roscas without an
overbidding assumption. Lemma 4 below shows that over-
bidding cannot drive payments much higher than equilib-
rium welfare. The lemma extends the following logic: In
equilibrium, the participant who wins in the final round
has no competition, and is therefore making zero payments.
Consequently, the participant who wins in the second-to-last
round cannot expect any rebates from round n, and therefore
has no incentive to overbid. This, in turn, limits the rebates
due the participant who wins the round before that, and so
on. These limits on rebates limit the extent of overbidding
that might occur. Throughout this section, we index partici-
pants such that in round t, the winner is participant t.

Lemma 4. Fix a Nash equilibrium of a first-price rosca.
Then:

p̂tt ≤ vtt + 1
n−1

n∑
t′=t+1

vt
′

t′ (
n
n−1 )

t′−t−1.

We provide the proof in the supplementary materials.

Theorem 3. In any Nash equilibrium of the first-price rosca,
the PoA is at most (2e+ 1)e/(e− 1).

The result follows from summing the bounds on p̂i(a)
from Lemma 4, which can be arranged to obtain an upper
bound of e

∑
i vi · xi(a) of the total gross payments. The

theorem then follows from applying smoothness as before.

3.4 Extension to Nonlinear Utilities
In Appendix C, we extend the price of anarchy results above
beyond quasilinear utilities. With arbitrary convex cost for
payments C, the setting comes to resemble hard budgets,
for which the price of anarchy is known to be poor. We
parametrize our results by upper (β) and lower (α) bounds
on the slope C ′. We give performance guarantees which
scale linearly with the ratio β/α. For up-front roscas, our
bounds are unconditional, while for sequential roscas, we
assume an analogous no-overbidding condition to the quasi-
linear version.

4 Swap Roscas
Several common rosca formats eschew competition between
participants in allocating pots. Examples include roscas
based on random lottery allocations or those based on se-
niority or social status (Anderson, Baland, and Moene 2009;
Kovsted and Lyk-Jensen 1999). To improve total welfare, it
is common practice for participants to engage in an after-
market by buying or selling their assigned allocations when
it is mutually beneficial, i.e., by swapping rounds in the
rosca (Mequanent 1996).

In this section, we formally define these swap roscas and
show that, for participants with quasilinear utilities (C(p) =
p), this aftermarket is guaranteed to converge to an outcome
that yields at least half of the optimal welfare. We then
present experimental results showing that this guarantee is
often better, even for strictly convex C.



4.1 Theoretical Analysis
As is common in the literature and in practice, we assume
that the aftermarket occurs via a series of two-agent swaps
(Mequanent 1996; Bouman 1995b; Ardener 1964). We as-
sume these swaps can occur at any round t. We denote by pt

the vector of payments for round t, which are initialized to 0
for each round and updated as swaps occur. A swap occurs if
and only if it is utility-improving for two participants under
some set of payments. Formally:

Definition 8. Given initial allocation x and payments pt

at round t, a swap is given by a pair of participants i, i′
assigned to rounds j, j′ ≥ t, respectively, and a payment
p̂. A swap is valid if vj

′

i − C(pti + p̂) > vji − C(pti) and
vji′ − C(pti′ − p̂) > vj

′

i′ − C(pti′).
Upon executing a swap, set xji , x

j′

i′ ← 0, xj
′

i , x
j
i′ ← 1,

pti ← pti + p̂, and pti′ ← pti − p̂.

Note that with quasilinear participants, all valid swaps
must strictly improve allocative efficiency since C(p) = p.
That is, vj

′

i + vji′ > vji + v
j′

i′ , and the validity of a swap does
not depend on the initial payments pt. We then study roscas
of the following form:

Definition 9. A swap rosca starts from an initial allocation
x and initial payments p = {pt}nt=1 of 0 for each partic-
ipant and round. At each round t = 1, . . . , n, participants
execute valid swaps and we update the allocation and pay-
ment accordingly. We do so until there are no valid swaps.

Note that for non-linear C, new swaps may become valid
moving from round t to t+1, as each new round’s payments
reset to 0. For quasilinear participants, however, Definition 9
executes all swaps in round 1. In this case, the resulting al-
location is guaranteed to be stable to pairwise swaps.

Definition 10. An allocation x is swap-stable if for all par-
ticipants i, i′ assigned to j, j′, we have that vji + vj

′

i′ ≥
vj
′

i + vji′ .

For quasilinear participants, swap-stability is guaranteed
regardless of the initial allocation. Convergence of the swap
process follows from the fact that the total allocated value∑
i vi · xi strictly increases each swap and that the number

of allocations is finite.

Theorem 4. For quasilinear participants, the welfare ap-
proximation for every swap rosca is at most 2.

Proof. Without loss of generality, assume that the welfare-
optimal allocation assigns each participant i to be allocated
the pot in round i, so the optimal welfare is

∑
i v
i
i . Now let

π(i) denote the round when participant i is allocated the pot
in the swap rosca’s final allocation, and π−1(i) the partici-
pant allocated the pot in round i. Note that π and π−1 are
bijections. Furthermore, under quasilinear utilities, all pay-
ments between participants are welfare-neutral, and hence
the rosca welfare is given by

∑
i v
π(i)
i .

For any participant i, note that swap-stability implies

v
π(i)
i + viπ−1(i) ≥ v

i
i + v

π(i)
π−1(i) ≥ v

i
i .

Summing over all participants i, we get∑
i
v
π(i)
i +

∑
i
viπ−1(i) ≥

∑
i
vii .

Since π and π−1 are bijections, both sums on the lefthand
side are equal to the rosca welfare, and the righthand side is
the optimal welfare, giving us a 2-approximation.

Example 1 in the appendix shows that this bound is tight.

4.2 Experimental Results
The results presented so far partially rationalize the preva-
lence of auction and swap roscas. However, two limita-
tions prevent a comprehensive view of roscas’ allocative ef-
ficiency. First, the worst-case nature of our theoretical results
give little detail about outcomes in typical instances. Second,
our results hold only under quasilinear utilities, which may
be less realistic for extremely vulnerable participants.

This section complements our theoretical results with
computational experiments that shed light on these latter
questions for swap roscas. We simulate swap roscas under
natural instantiations of participants’ values, and with par-
ticipants’ costs for payments taking a well-studied but non-
linear form. We find that the approximation ratio of these
roscas in more typical scenarios is significantly better than
the worst-case ratio, even after relaxing quasilinearity. Our
experiments also allow us to study the way rosca perfor-
mance changes as participants’ values for their payments
become more convex. In particular, we use constant relative
risk aversion (CRRA) utilities, given by

C(p;W,a) = (1− a)−1(W 1−a − (W − p)1−a),
where the parameter W represents the participant’s start-
ing wealth, and a governs the convexity of the function,
with a = 0 being quasilinear. For a > 0, CRRA utilities
have a vertical asymptote at p = W , as participants are
unable to spend beyond their means. We choose W to be
less than many of our participants’ maximum values for the
rosca pot. This is intended to capture that most participants
cannot afford the durable good without the rosca (Ander-
son and Baland 2002). Note that as a → 1, C(p;W,a) →
ln(W ) − ln(W − p). We choose CRRA utilities because
they are standard for modeling preferences for wealth in eco-
nomics (see, e.g. Romer 1996).

We give two sets of experimental results. In each, we
run 9- and 30-person roscas (typical sizes for small- and
medium-sized roscas), and compare three quantities: the
optimal welfare under our selected value profile, the ex-
pected approximation ratio of a random allocation before
any swaps, and the approximation ratio for a swap rosca run
from a random allocation. Our swap roscas are simulated
according to the description in Section 4. For a pair of par-
ticipants i and j for whom there exists a valid swap, there
are generally many payments which will incentivize a swap
and we choose the smallest such payment.

4.3 Experiment: CRRA Utilites
Our first experiment fixes a profile of participant values and
studies the performance of swap roscas as the convexity pa-
rameter a and starting wealth W vary. The value profile,



comprised of 9 participants, features 6 with cutoff values of
the form vti = v for all i ≤ t̂ for some t̂, and three par-
ticipants with values which are roughly linearly decreasing
in time. The average maximum value among cutoff partici-
pants is 5, which matched the average value for linearly de-
creasing values. We give all value profiles explicitly in the
supplement. We consider values of a ranging from 0 (quasi-
linear) to 2 (very convex), focusing on smaller values, as
larger values of a tend to represent very similar, extreme
functions. We take W in the range {1, . . . , 5}, as this puts
participants’ wealth levels generally below their values for
the rosca pot. Welfare values are averaged over 10, 000 sim-
ulation runs, each starting with a random initial allocation
that participants can pay to improve through swaps. Results
for this simulation can be found in Table 1.

Table 1: Swap Rosca Performance Under Different CRRA
Parameters (OPT = 45, random baseline ratio = 1.601)

W
1 2 3 4 5

a

0 1.035 1.034 1.035 1.034 1.035
0.1 1.121 1.119 1.070 1.067 1.063
0.2 1.122 1.121 1.080 1.074 1.074
0.3 1.122 1.119 1.118 1.086 1.081
0.5 1.122 1.124 1.121 1.119 1.120
0.75 1.122 1.122 1.123 1.121 1.121
1 1.124 1.122 1.121 1.123 1.122
1.5 1.123 1.123 1.122 1.122 1.123
2 1.122 1.125 1.123 1.122 1.123

Across all values of W , the approximation ratio of swap
roscas generally worsens (increases) as the level of convex-
ity a increases. Intuitively, this is likely due to the fact that
since C is convex, a participant receiving payments for a
swap values them less than the participant offering the pay-
ments. Consequently, swaps are less likely to occur, even
if they would lead to improved allocative efficiency. Mean-
while, the effect of W depends on the level of convexity a.
When 0 < a < 0.5, participants with higher wealth W have
more money to spend on swaps, making swaps more likely
to occur and hence improve allocative efficiency. Thus, ap-
proximation ratios improve (decrease) with higherW . How-
ever, as convexity increases, the disincentive to swap caused
by convexity overcomes the benefit of having greater wealth
with which to pay for swaps, and the approximation ratios
no longer change with W . For all parameter values chosen,
however, swap roscas led to a marked improvement over the
approximation ratio from random allocation alone, suggest-
ing that even under extreme convexity, participants are able
to identify local improvements to social welfare. We also re-
peat this experiment with a 30-participant rosca using sim-
ilar value profiles and observe the same trends. We present
the results in the supplement.

4.4 Experiment: Distributional Diversity
Our second set of experiments, discussed in more detail in
the supplement, varies the distribution of values across the
population of participants, again for 9- and 30-person roscas.

This allows us to study the way the distribution of need
across a population impacts rosca welfare. We find that per-
formance is insensitive to wide inequality in values of par-
ticipants in the population.

5 Discussion and Conclusion
Roscas are complex and varied social institutions, significant
for their integral role in allocating financial resources world-
wide. In this work, we focus specifically on the allocative
efficacy of roscas as lending and saving mechanisms. We
derive welfare guarantees for roscas under a variety of al-
location protocols and show that many commonly-observed
roscas provide a constant factor welfare approximation to
the optimal allocation. This guarantee, we believe, gives par-
tial explanation for the ubiquity of roscas. In addition to
these specific results, our work also serves as proof of con-
cept for the potential for techniques from algorithmic game
theory to help us better understand roscas and, more gener-
ally, how communities self-organize to create opportunity.
We highlight ideas for further exploration below.

First, our work modeled the savings aspect of roscas,
though roscas are also used as insurance when participants
experiencing unanticipated needs may bid to obtain the pot
earlier than they may have otherwise planned (Calomiris and
Rajaraman 1998; Klonner 2003b, 2001). There remain many
gaps in our understanding of roscas when participants’ val-
ues and incomes evolve stochastically over time.

Another challenge is understanding the tension between
allocative efficiency and wealth inequality. Participants with
valuable investment opportunities might not bid as aggres-
sively if their low wealth causes them to value cash highly.
This is exacerbated when participants experience income
shocks, which is often experienced by economically vul-
nerable individuals (Abebe, Kleinberg, and Weinberg 2020;
Nokhiz et al. 2021). Ethnographic work shows that altru-
ism plays a significant role in alleviating this tension (Klon-
ner 2008; Sedai, Vasudevan, and Pena 2021). Roscas often
serve a dual role of community-building institutions. Conse-
quently, participants tend to observe signals about each oth-
ers’ shocks, and act with mutual aid in mind (Klonner 2008;
Mequanent 1996).

Though roscas often work outside formal institutions,
studies show that “rosca enforcement” is not often an issue.
For instance, (Smets 2000; Van den Brink and Chavas 1997)
show that early recipients of the pot rarely default, in part
due to strong community norms and standards. These con-
siderations often go unaccounted for in theoretical studies
of roscas. A deeper understanding of community norms and
standards can shed more light on rosca enforcement mecha-
nisms and robustness.

Finally, there are many questions on how aspects of
the population and environment govern the performance of
roscas: i.e., under what conditions would one prefer one
type of rosca over another? Similarly, how do roscas per-
form when their members evolve over time, e.g., with some
participants joining part way through the rosca and poten-
tially holding more leverage? Likewise, rosca formation is
known to be crucial, with many roscas preferring individu-
als with similar socio-economic backgrounds. Modeling and



examining the rosca formation process can improve our un-
derstanding of the interaction between the rosca formation
process and their functionality, efficacy, and robustness.
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A Further Related Works
Roscas are well-documented as both pervasive and effective
in promoting positive economic, social, and even health out-
comes. Beyond works already mentioned, Raccanello and
Anand (2009) document the use of roscas to finance health-
care expenditures and build wealth in Mexico. Aredo (2004)
demonstrates the flexible and varied nature of roscas in
Ethiopia. Pasha and Dayrra (2016) show that ekub are an en-
gine of small business finance in the city of Arba Minch, and
that private businesses actually prefer raising money from
roscas than from formal financial institutions. Amankwah
et al. (2019) and Alabi, Alabi, and Akrobo (2007) study
roscas in Ghana, Ogujiuba, Jumare, and Stiegler (2013) in
Nigeria, and Kabuya (2015) in Eswatini. Alabi, Alabi, and
Akrobo (2007) show from evidence in Ghana that people
joined roscas for their perceived efficiency, and that roscas
facilitated small-scale business enterprises.

Many studies analyze composition and participation dif-
ferences across age, ethic, gender, and socioeconomic lines.
Adams Dale and Canavesi (1992) and Ardener and Bur-
man (1995) show that rosca participation is higher among
women than men. Anderson and Baland (2002) shows how
employed married women in particular in Kenya use roscas
to save, protecting earnings from their husbands’ more
immediate-minded spending. Roscas are known to often in-
clude members from similar socio-economic backgrounds
(Aredo 2004). Nonetheless, Klonner (2008) shows that in-
tragroup diversity is associated with higher rates of bidder
altruism and more efficient intra-rosca allocations.

Economists have also studied the interaction of roscas
with formal credit markets. For instance, Besley, Coate, and
Loury (1994) show that while credit markets are more effi-
cient than roscas, there are situations in which one can ex-
pect a higher ex ante expected utility in roscas than formal
credit markets. Relatedly, Fang, Ke, and Zhou (2015) show
that in cases where formal credit markets are present but im-
perfect, roscas and credit markets can complement one an-
other, thereby improving social welfare.

A different line of work studies roscas as a form of in-
surance. Klonner (2001) develops the first such model of
roscas, comparing their performance to risk-sharing con-
tracts. In this model, roscas can serve as a financial in-
termediary and benefit risk-averse participants. This work
also analyzes the risk-sharing performance of several bid-
ding roscas run simultaneously. The conclusion is that this
set-up matches the performance of linear risk-sharing con-
tracts while boasting greater enforceability. Other studies of
roscas as insurance include Baland, Guirkinger, and Hartwig
(2019), and Calomiris and Rajaraman (1998).

This work is most closely related existing analyses of
roscas’ efficiency. Besley, Coate, and Loury (1993, 1994)
introduce the first theoretical model of roscas, and a strong
focus these and of subsequent studies is on providing com-
parative welfare guarantees, e.g. between different types of
roscas, or between roscas and alternative financial institu-
tions. These results typically require strong assumptions,
e.g. on homogeneity values of either across participants or
over time. For example, Besley, Coate, and Loury (1993,
1994) show that both the random and bidding rosca are inef-

ficient, but do not give bounds on this inefficiency. Kovsted
and Lyk-Jensen (1999) analyze differences between random
and bidding roscas, again under the assumption that people
are saving for a large purchase. They allow for some het-
erogeneity in people’s access to credit, and again provide a
comparative welfare analysis between bidding and random
roscas. Our work paints a more complete picture by giving
quantified bounds on roscas’ inefficiency, even in the face
of heterogeneity of participants’ values across agents and
across time.

Our results apply techniques from auction theory and
the price of anarchy literature. In particular, we make
extensive use of smoothness, formalized in Roughgar-
den (2009) and adapted to auctions in Syrgkanis and
Tardos (2013). Smoothness is a sufficient condition for
approximately-optimal equilibrium welfare, and is pre-
served by combination with other smooth mechanisms. In
addition, smoothness-derived guarantees generalize beyond
standard quasilinear, full-information settings to learning
outcomes and Bayes-Nash equilibria, revenue Hartline, Hoy,
and Taggart (2014), large games Feldman et al. (2016), risk-
averse agents, Kesselheim and Kodric (2018), and more.
Roughgarden, Syrgkanis, and Tardos (2017) give an excel-
lent survey. Notably, because of the way payments are re-
distributed, smoothness is not sufficient for approximately
optimal welfare in roscas. To derive our welfare results, we
instead combine smoothness with extra analysis to control
the impact of redistribution on welfare.

B Missing Proofs and Examples
B.1 Swap Rosca Example
The example below shows that the bound from Theorem 1
is tight.

Example 2. Suppose we have three participants with value
vectors: v1 = (0, 0, 0), v2 = (1, 0, 0), and v3 = (1, 1, 0).
The optimal allocation allocates the pot to participant 2 in
round 1, participant 3 in round 2, and participant 1 in round
3 for total welfare OPT(v) = 2. However, the initial al-
location that allocates the pot to participant 1 in round 2,
participant 2 in round 3, and participant 3 in round 1 is
swap-stable and has welfare 1.

B.2 Proof of Lemma 3
Lemma 3. LetM be a strongly individually-rational single-
item mechanism. If M is (λ, µ1, µ2)-smooth for λ ≤ 1 and
µ1, µ2 ≥ 0, then its round-robin composition is (λ, µ1 +
1, µ2)-smooth as long as vti ≥ v

t+1
i for all i and t.

Proof. Given value profile v, an optimal allocation is an as-
signment from participants i to pots t∗i . For values v and
action profile a in the sequential mechanism, we construct a
deviation a∗i for each participant i in the following way: par-
ticipant i simulates their equilibrium strategy up until round
t∗i − 1. Then, in round t∗i , they play their smoothness devi-
ation for M on value profile v̂ and action ati for i, where
v̂i = vti and 0 for all other participants. They play ⊥ in all
subsequent rounds. Note that, in simulating ai, participant i



may win in some round t̂i ≤ t∗i , in which case the mecha-
nism excludes them from future rounds.

Let SEQ denote the set of participants whose deviations
cause them to win before t∗i and let SOPT denote the set of
participants who do not win before t∗i , hence are able to play
their smoothness deviation in round t∗i . For participants in
SOPT, the choice of smoothness deviation for round t∗i im-
plies:

vi·xi(a∗i ,a−i)− p̂i(a∗i ,a−i)

≥ λ · vt
∗
i
i − µ1

∑
k
p̂
t∗i
k (a)− µ2

∑
k
B
t∗i
k (a),

where for any period t, Btk(a) is participant k’s bid if they
win in round t and 0 otherwise.

For participants in SEQ, if t̂i denotes the round they win
in equilibrium, then

vi ·xi(a∗i ,a−i)− p̂i(a∗i ,a−i) = vt̂ii − p̂i(a) ≥ v
t∗i
i − p̂i(a),

where the inequality follows from the fact that values are
nonincreasing over time.

Summing over participants, we obtain:∑
i

(vi · xi(a∗i ,a−i)− p̂i(a∗i ,a−i))

≥ λOPT(v)− µ1

∑
i∈SOPT

∑
k

p̂
t∗i
k (a)−

∑
i∈SEQ

p̂i(a)

− µ2

∑
i∈SOPT

∑
k

B
t∗i
k (a).

The second and third terms on the righthand side of this in-
equality are each at least the total payments of the sequential
mechanism. For the last term, we can write∑

i∈SOPT

∑
k

B
t∗i
k (a) ≤

∑
i

∑
t

Bti (a) =
∑
i

Bi(a),

where the first line follows from the fact that participants’
bids are nonnegative and the second line from the fact that
participants win in at most one round. We therefore obtain∑

i
(vi · xi(a∗i ,a−i)− p̂i(a∗i ,a−i))

≥ λOPT(v)− (µ1 + 1)
∑

i
p̂i(a)− µ2

∑
i
Bi(a)

giving us the desired inequality.

The following example demonstrates the necessity of our
no-overbidding assumption.
Example 3. Suppose participant 1 has value (10, 0) and
participant 2 has value (0, 0). If participant 2 bids 10 in
round 1, then participant 1 cannot win without incurring
negative utility. participant 2 thus wins for free and hence
no rebates are distributed. The equilibrium welfare here is
0, whereas the optimal welfare is 10.

B.3 Proof of Lemma 4
Lemma 4. Fix a Nash equilibrium of a first-price rosca.
Then:

p̂tt ≤ vtt + 1
n−1

n∑
t′=t+1

vt
′

t′ (
n
n−1 )

t′−t−1.

Proof. In what follows, we index bidders so that in the opti-
mal allocation, participant i wins in round i.

We suppress dependence of payments and allocations on
the profile of equilibrium bids when it is clear from context.
We argue by strong induction on the number of rounds re-
maining.

As our base case, note that participant n could choose to
bid 0 and incur nonnegative utility from round n.2 Their con-
tinuation utility for playing according to their equilibrium
strategy is vnn − p̂nn ≥ 0, which yields the desired inequality
for the base case.

Now assume that for all rounds from t + 1 onward, the
desired inequality holds. participant t could choose to bid 0
in all rounds starting with t. The continuation utility from
this deviation is at least 0. Meanwhile, in equilibrium, t is
receiving vtt − p̂tt +

∑n
t′=t+1 p̂

t′

t′/(n − 1) ≥ 0 from future
rounds. We therefore can upper bound p̂tt by

vtt +
1

n−1

n∑
t′=t+1

[
vt
′

t′ +
1

n−1

n∑
t′′=t′+1

vt
′′

t′′

(
n
n−1

)τ]
,

where τ = t′′ − t′ − 1. Collecting coefficients on vt
′

t′ gives
us the following equivalent upper bound:

p̂tt ≤ vtt + 1
n−1

n∑
t′=t+1

vt
′

t′

1 + 1
n−1

t′−t−2∑
j=0

(
n
n−1

)j
= vtt +

1
n−1

n∑
t′=t+1

vt
′

t′

(
1 + 1

n−1
1−( n

n−1 )
t′−t−1

1− n
n−1

)

= vtt +
1

n−1

n∑
t′=t+1

vt
′

t′ (
n
n−1 )

t′−t−1.

Proof of Theorem 3. We first sum the bounds from
Lemma 4:∑

i

p̂i(a) =

n∑
t=1

p̂tt(a)

≤
n∑
t=1

[
vtt +

1
n−1

n∑
t′=t+1

vt
′

t′ (
n
n−1 )

t′−t−1

]

=

n∑
t=1

(
n
n−1

)t−1
vtt

≤ e
n∑
t=1

vtt = e
∑
i

vi · xi(a).

By Lemma 3, the first-price rosca is (1 − 1/e, 2, 0)-smooth
before rebates. Considering the same deviation strategy with

2Note that this is different from their overall utility due to re-
bates in rounds 1 through n− 1. Also note that we can, in fact, say
p̂nn = 0, but the weaker argument above yields cleaner indexing
without changing the end constant.



rebates, we obtain,∑
i
uvii (a) ≥

∑
i
uvii (a∗i ,a−i)

≥
∑

i
(vi · xi(a∗i ,a−i)− p̂i(a∗i ,a−i))

≥ (1− 1/e)OPT(v)− 2
∑

i
p̂i(a)

≥ (1− 1/e)OPT(v)− 2e
∑

i
vi · xi(a)

The result follows from noting that both
∑
i u

vi
i (a) and∑

i vi · xi(a) represent the equilibrium welfare.

C Extension to Nonlinear Utilities
In this appendix, we show how our auction results for up-
front roscas and no-overbidding sequential roscas extend
to the more general setting of nonlinear cost for money
C. We consider the class of convex functions C satisfying
C(0) = 0 and C ′(x) ∈ [α, β] on the range of relevant val-
ues for some 0 < α ≤ β, and we prove bounds which de-
grade linearly in the ratio β/α.If C is allowed to be an arbi-
trary convex function, then it could serve as a hard budget;
auctions with hard budgets are known to have unbounded
PoA (Syrgkanis and Tardos 2013; Dobzinski and Paes Leme
2014). Under this regime we can take advantage of two facts
which follow immediately from basic calculus:
Lemma 5. Let C be convex and increasing and satisfy
C ′(x) ∈ [α, β] and C(0) = 0, with 0 < α ≤ β.

Then:
a. For x ≥ 0, C(x) ∈ [αx, βx].
b. For x ≤ 0, C(x) ∈ [βx, αx].

As in the quasilinear case, we demonstrate our approach
with up-front roscas, then present the more involved analysis
of sequential roscas. Both the tradeoff step between utilities
and payments and the upper bound on payments need to be
adjusted to accommodate nonlinear utilities.

C.1 Up-Front Roscas
Under quasilinear utilities, it was unimportant to the analy-
sis whether payments and rebates were made before round
1 or distributed across time. When utilities are nonlinear,
recall that an participant i’s disutility for payments is bro-
ken into the sum

∑
t C(p

t
i). Hence, the timing of payments

and rebates could change payoffs dramatically. Our analysis
will be agnostic to these timing considerations. Whatever the
timing, we continue to denote by pti(b), p̂

t
i(b), and r̂ti(b) the

net payments, gross payments, and rebates, respectively, of
participant i at time t under bid profile b. Under any up-front
rosca, participant i’s total payments are their bid. Hence,∑
t p̂
t
i(b) = bi and

∑
t r̂
t
i(b) =

∑
j 6=i bj/(n− 1).

Trading off payments and utilities becomes more com-
plex. We extend the proof from Syrgkanis and Tardos
(2013), parameterizing by a constant ρ:
Lemma 6. For any ρ ∈ [0, 2/β] and any Nash equilibrium
b of an up-front rosca with values v:∑

i
uvii (b) ≥ (1− ρβ

2 )OPT(v)− 1
ρ

∑
i
p̂i(b).

Proof. Pick a player i, and consider the deviation bid b∗i ∼
U [0, ρvt

∗

i ], where t∗ denotes round i is allocated in the opti-
mal assignment. Let î denote the participant who wins t∗
under b. Then we can lower bound the deviation utility
uvii (b∗i ,b−i) as:∫ ρvt

∗
i

0

(
vt
∗

i x
t∗

i (b∗i ,b−i)−
∑
t

C(pti(b
∗
i ,b−i))

)
/ρvt

∗

i db∗i

≥
∫ ρvt

∗
i

0

(
vt
∗

i x
t∗

i (b∗i ,b−i)− C(b∗i )
)
/ρvt

∗

i db∗i

≥
∫ ρvt

∗
i

0

(
vt
∗

i x
t∗

i (b∗i ,b−i)− βb∗i
)
/ρvt

∗

i db∗i

=

∫ ρvt
∗
i

bî

1
ρ db

∗
i −

βρvt
∗
i

2

= vt
∗

i −
bî
ρ −

βρvt
∗
i

2

Summing the deviation utilities across participants yields the
desired bound.

To upper bound the impact of rebates, we use:

Lemma 7. Let b be a Nash equilibrium of an up-front rosca.
Then for any participant i, p̂i(b) ≤ vi · xi(b)/α.

Proof. Assume for some i that αp̂i(b) > vi · xi(b). Then i
could improve their utility by bidding 0, which, in an up-
front rosca, does not change their rebates: r̂i(0,b−i) =
r̂i(b) > vi · xi(b) − αp̂i(b) + r̂i(b) ≥ vi · xi(b) −∑
t C(p̂

t
i) + r̂i(b).

Combining Lemmas 6 and 7 and choosing ρ as follows:

ρ =
β +

√
β(2α+ β)

β(α+ β +
√
β(2α+ β))

yields the following price of anarchy bound:

Theorem 5. With cost for money C satisfying C ′(x) ∈
[α, β] every Nash equilibrium of an up-front rosca has PoA
at most:

POA ≤
α+ β +

√
β(2α+ β)

α
.

Note that the bound degrades linearly with the ratio β/α,
as promised. Moreover, taking α = β = 1 slightly improves
on the bound from Theorem 1; several of the other constants
in the paper can be improved through similar optimization of
the bid deviations. We eschewed such optimization in favor
of readability.

C.2 Sequential Roscas
We take a smoothness-based approach to sequential roscas.
We will use the following generalization, adapted to non-
linear utilities:

Definition 11. LetM be a sequential single-bid auction. We
say M is (λ, µ1, µ2)-smooth if for every value profile v and



action profile a, there exists a randomized action a∗i (ai,v)
for each i such that:∑

i
uvii (a∗i (ai,v),a−i)

≥ λOPT(v)− µ1

∑
i
p̂i(a)− µ2

∑
i
C(Bi(a)),

where Bi(a) is i’s bid in the round where they win, or 0 if
no such round exists.

First-and second-price auctions are smooth, via exten-
sions of the arguments from Syrgkanis and Tardos (2013).
Lemma 8. The single-round second-price auction is
(1, 0, 1)-smooth.

Proof. Let h be the index of the participant with the highest
value. Have this bidder bid C−1(vh), while the remaining
participants bid 0. Let i∗ denote the index of the highest bid-
der in equilibrium, and î the index of the highest bidder other
than h. (We may have i∗ = î.) If h wins bidding C−1(vh),
their utility is vh−C(aî) = OPT−C(aî) ≥ OPT−C(ai∗).
Otherwise, they lose and earn utility 0, while aî ≥ C−1(vh).
It follows that OPT−C(ai∗) = vh−C(ai∗) ≤ vh−C(aî) ≤
vh−C(C−1(vh)) = 0. This implies the desired smoothness
bound.

Lemma 9. The single-item first-price auction is ((1 −
1/eβ)β−1, 1, 0)-smooth.

Proof. The highest valued participant, say index h, can de-
viate to submitting a randomized bid a∗h drawn from the dis-
tribution with density function f(x) = 1

vh−β·x and support
[0, (1 − 1/eβ)vh/β]. The utility of the highest participant
from this deviation is:

uvhh (a∗h,a−h) =

∫ (1− 1

eβ
) vhβ

maxi6=h ai

(vh − C(x))f(x)dx

≥
∫ (1− 1

eβ
) vhβ

maxi6=h ai

(vh − β · x)f(x)dx

=

(
1− 1

eβ

)
vh
β
−max

i
ai.

Since all other bidders can get utility at least 0 by e.g. bid-
ding 0, the stated smoothness bound holds.

Under the generalized definition of smoothness, the
round-robin composition result, Lemma 3 holds without
modification. Hence, we obtain:
Corollary 3. First-price roscas are ((1 − 1/eβ)β−1, 2, 0)-
smooth, and second-price roscas are (1, 1, 1)-smooth.

Under non-linear utilities, the appropriate notion of over-
bidding states that no participant bids in a way that could
yield negative utility. This upperbounds their bids by an
amount that depends on C:
Definition 12. Action profile a satisfies no-overbidding if
C(Bi(a)) ≤ vi · xi(a) for every participant i.

Under no-overbidding, values and payments cannot ex-
ceed utilities by too much, as the following two Lemmas
state.

Lemma 10. In any no-overbidding profile a of sequential
rosca based on a strongly IR single-item auction:∑

i

vi · xi(a) ≤ β
α

∑
i

uvii (a).

Proof. By definition,
∑
i u

vi
i (a) =

∑
i vi · xi(a) −∑

i

∑
t C(p

t
i(a)). The last term can be further de-

composed as
∑
i

∑
t C(p

t
i(a)) =

∑
i

∑
t C(p̂

t
i(a)) +∑

i

∑
t C(−r̂ti(a)). By the no-overbidding assumption,∑

i vi · xi(a) ≥
∑
i

∑
t C(p̂

t
i(a)). Hence, the the ratio of

values to utilities is upper bounded by the ratio of disutility
from payments to utility from rebates. That is:∑

i vi · xi(a)∑
i u

vi
i (a)

≤
∑
i

∑
t C(p̂

t
i(a))

−
∑
i

∑
t C(−r̂ti(a))

.

The lemma then follows from noting:∑
i

∑
t

C(p̂ti(a)) ≤ β
∑
i

∑
t

p̂ti(a)

−
∑
i

∑
t

C(−r̂ti(a)) ≥ α
∑
i

∑
t

p̂ti(a).

Lemma 11. In any no-overbidding profile a of sequen-
tial rosca based on a strongly IR single-item auction:∑
i p̂i(a) =

∑
i r̂i(a) ≤ α−1

∑
i u

vi
i (a).

Proof. By no-overbidding,
∑
t C(p̂

t
i) ≤ vi ·xi(a). We may

therefore write:∑
i

p̂i(a) =
∑
i

r̂i(a)

≤ α−1
∑
i

∑
t

−C(−r̂ti(a))

≤ α−1
(∑

i

vi · xi(a)

−
∑
i

∑
t

C(p̂ti(a))−
∑
i

∑
t

C(−r̂ti(a))
)

= α−1
∑
i

uvii (a),

where the first inequality follows from upper bounding C,
and the second from no-overbidding.

Theorem 6. Let M be a strongly IR, single-item auction
that is (λ, µ1, µ2)-smooth, with λ ≤ 1. With quasilinear
participants, every no-overbidding Nash equilibrium of the
corresponding auction rosca with rebates has PoA at most
(1 + µ1α

−1 + µ2βα
−1)/λ.

Proof. The theorem follows from the inequalities below,



justified after their statement:

λOPT ≤
∑

i
uvii (a∗i (ai,v),a−i) + µ1

∑
i
p̂i(a)

+ µ2

∑
i
Ĉ(Bi(a))

≤
∑

i
uvii (a∗i (ai,v),a−i) +

µ1

α

∑
i
uvii (a)

+ µ2

∑
i
Ĉ(Bi(a))

≤
∑

i
uvii (a∗i (ai,v),a−i) +

µ1

α

∑
i
uvii (a)

+ µ2

∑
i
vi · xi(a)

≤
∑

i
uvii (a∗i (ai,v),a−i) +

µ1

α

∑
i
uvii (a)

+ µ2β
α

∑
i
uvii (a).

The first inequality follows from smoothness. The second
follows from Lemma 11, and the fourth from Lemma 10.
The third inequality follows from no-overbidding. Applying
best response yields the result.

We obtain price of anarchy bounds for second- and first-
price rocscas as corollaries. In particular, note that the price
of anarchy is scale-invariant with respect to C. That is, for
any γ > 0 and any equilibrium a with values v, the same
action profile a is also an equilibrium for values v̂ = γv and
cost function Ĉ(p) = γC(p). Hence, any bound proved for
a scaling γβ, γα of β, α also holds for β, α. Taking γ = 1/β
implies the promised linear dependencies:
Corollary 4. Any Nash equilibrium of the second-price
rosca satisfying no-overbidding has PoA at most 1 + 2β/α.
Corollary 5. Any Nash equilibrium of the first-price rosca
satisfying no-overbidding has PoA at most (1 + 2β/α)(1−
1/e).

Note that our first-price result requires the no-overbidding
assumption. We leave open whether the less restrictive anal-
ysis of Section 3.3 can be extended in some way to the non-
linear setting as well.

D Other Extensions for Auction Results
The smoothness framework is known to be robust to varia-
tions in equilibrium assumptions, and we inherit this robust-
ness to a significant degree. First, in roscas and especially
sequential ones, it is reasonable to assume that participants
may not best respond perfectly. A more natural notion may
be some form of ε-best response, where participants max-
imize their utility up to an additive ε error. All our results
hold under this generalization, with the welfare guarantees
similarly degrading by an additive,O(nε) factor. Second, we
may also want to study roscas under incomplete information,
with each participant’s values being drawn according to a
prior. Smoothness-based welfare results typically extend to
such settings, and ours do as well in large part. In particular,
Theorems 1 and 2 both hold under any Bayes-Nash equilib-
rium where participants’ value vectors are drawn indepen-
dently of one another. For Theorem 2, this can be derived
directly by mimicking the proof of Theorem 4.3 in Syrgka-
nis and Tardos (2013). The extension to Theorem 1 holds by

additionally observing that in any Bayes-Nash equilibrium
of up-front rosca, no participant has an incentive to overbid.

Unfortunately, our proof of Lemma 4 seems to rely on
the full-information assumption. We leave it as an open
question whether a Lemma 4 can be extended beyond full-
information environments. Either way, among all auction
settings, roscas, where participants are typically members
of tight-knit communities, are maybe the best candidate for
assuming full information.

E Experiment: CRRA Utilities (Extended)

Table 2: Value Profiles for 9-participant Roscas Used in
CRRA Utilities Experiment

Profiles (Values in Rounds 1-9)
2 0 0 0 0 0 0 0 0
2 2 2 2 2 0 0 0 0
5 5 0 0 0 0 0 0 0
5 5 5 5 5 5 0 0 0
8 8 8 0 0 0 0 0 0
8 8 8 8 8 8 8 0 0
8 8 8 5 5 5 2 2 2
8 8 6 6 4 4 2 2 0
8 7 6 5 4 3 2 1 0

The value profiles for in our CRRA Utilities experiment
in Section 4.3 are provided in Table 2. Recall that these
nine value profiles feature six with cutoff values of the form
vti = v for all i ≤ t̂ for some t̂ and three participants with
values that are roughly linearly decreasing in time. The av-
erage maximum value among cutoff participants is 5, which
matched the average value for linearly decreasing values.

We repeat this experiment using a 30-participant rosca
with qualitatively similar value profiles as those used in the
9-participant setting: the 30 value profiles feature 20 with
cutoff values of the form vti = v for all i ≤ t̂ for some t̂
and 10 participants with values that are roughly linearly de-
creasing in time. The average maximum value among cutoff
participants is 15.5, which is very close to the average value
for linearly decreasing values (15). Table 3 presents the re-
sults of our CRRA Utilities experiment from Section 4.3 re-
peated in a 30-participant rosca. Once again, we observe the
same trends as in the 9-participant rosca experiment, pro-
viding further evidence to strengthen the observations and
claims in Section 4.3.

F Experiment: Distributional Diversity
Tables 5- 6 summarize our second set of experiments, which
vary the composition of the population of participants in
both 9-participant and 30-participant roscas. More specif-
ically, we consider seven different configurations of value
profiles, described briefly below and provided for the 9-
participant rosca in Table 4 (qualitatively similar profiles
were again used for the 30-participant rosca, as in our CRRA
Utilities experiments). All participants have cutoff values,
with participant i’s cutoff at t = i. We then vary (a) the dis-
tribution of magnitudes for participants’ values and (b) the



Table 3: Swap Rosca Performance Under Different CRRA
Parameters (OPT = 551, random baseline ratio = 1.580)

W
1 2 3 4 5

a

0 1.036 1.036 1.036 1.036 1.036
0.1 1.105 1.104 1.087 1.086 1.085
0.2 1.105 1.104 1.088 1.088 1.086
0.3 1.104 1.104 1.105 1.090 1.089
0.5 1.105 1.104 1.104 1.104 1.104
0.75 1.104 1.104 1.105 1.104 1.104
1 1.104 1.105 1.105 1.104 1.105
1.5 1.104 1.104 1.105 1.105 1.105
2 1.104 1.104 1.105 1.104 1.104

correlation of an participant’s value with their cutoff round.
Distributions labeled “-dec” have values which are nega-
tively correlated with the cutoff round, and “-inc” have pos-
itively correlated values. The instance “pointmass” gives all
participants constant value up to their cutoffs. The remain-
ing instances can be described by the distribution of par-
ticipants’ constant values before their cutoffs: “unif” has a
distribution uniform on {1, . . . , 9}, “pareto” a pareto distri-
bution, and “unim” a unimodal distribution with its mode at
4. We further consider both quasilinear and CRRA utilities.

We first note that as in the previous experiment, swap
roscas provided across-the-board improvements over both
the worst-case ratios and those of random allocation, and
that under CRRA utilities, the social welfare degraded
slightly compared to quasilinear. Beyond these observations,
we can glean further insights from pairwise comparisons.
Distributions labeled “-dec” represent settings where higher-
valued participants have more urgent need for allocation.
Both random allocation and swap roscas (under CRRA util-
ities) perform poorly on these instances compared to their
“-inc” counterparts, whereas swap roscas (under quasilinear
utilities) achieved better (lower) performance ratios. Swap
rosca welfares were roughly double those of the random
allocations (i.e., swap roscas achieved performance ratios
that were half those of random allocations). A second in-
formative set of comparisons is between “pointmass” and
the “unim” distrbutions. Under both quasilinear and CRRA
utilities, the approximation ratio seems to be driven by the
correlation between urgency and value much more than the
level of inequality in needs: if the latter was the main con-
cern, both “unim” distributions would see worse perfor-
mance. Swap roscas seem well-equipped to coordinate al-
location among heterogeneous participants.

G Simulation Code
All code used for simulations can be found at:

github.com/cikeokwu/swap rosca sims

Table 4: Value Profiles for 9-participant Roscas Used in the
Distributional Diversity Experiment

0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
4 4 0 0 0 0 0 0 0
4 4 4 0 0 0 0 0 0
4 4 4 4 0 0 0 0 0
4 4 4 4 4 0 0 0 0
4 4 4 4 4 4 0 0 0
4 4 4 4 4 4 4 0 0
4 4 4 4 4 4 4 4 0

(a) pointmass

9 0 0 0 0 0 0 0 0
8 8 0 0 0 0 0 0 0
7 7 7 0 0 0 0 0 0
6 6 6 6 0 0 0 0 0
5 5 5 5 5 0 0 0 0
4 4 4 4 4 4 0 0 0
3 3 3 3 3 3 3 0 0
2 2 2 2 2 2 2 2 0
1 1 1 1 1 1 1 1 1

(b) unif-dec

0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 2 0 0 0 0 0 0
3 3 3 3 0 0 0 0 0
4 4 4 4 4 0 0 0 0
5 5 5 5 5 5 0 0 0
6 6 6 6 6 6 6 0 0
7 7 7 7 7 7 7 7 0
8 8 8 8 8 8 8 8 8

(c) unif-inc

12.7 0 0 0 0 0 0 0 0
6.4 6.4 0 0 0 0 0 0 0
4.2 4.2 4.2 0 0 0 0 0 0
3.2 3.2 3.2 3.2 0 0 0 0 0
2.5 2.5 2.5 2.5 2.5 0 0 0 0
2.1 2.1 2.1 2.1 2.1 2.1 0 0 0
1.8 1.8 1.8 1.8 1.8 1.8 1.8 0 0
1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 0
1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4

(d) pareto-dec

0 0 0 0 0 0 0 0 0
1.6 0 0 0 0 0 0 0 0
1.8 1.8 0 0 0 0 0 0 0
2.1 2.1 2.1 0 0 0 0 0 0
2.5 2.5 2.5 2.5 0 0 0 0 0
3.2 3.2 3.2 3.2 3.2 0 0 0 0
4.2 4.2 4.2 4.2 4.2 4.2 0 0 0
6.4 6.4 6.4 6.4 6.4 6.4 6.4 0 0
12.7 12.7 12.7 12.7 12.7 12.7 12.7 12.7 0

(e) pareto-inc

7.2 0 0 0 0 0 0 0 0
5.6 5.6 0 0 0 0 0 0 0
5.6 5.6 5.6 0 0 0 0 0 0
4.0 4.0 4.0 4.0 0 0 0 0 0
4.0 4.0 4.0 4.0 4.0 0 0 0 0
4.0 4.0 4.0 4.0 4.0 4.0 0 0 0
2.4 2.4 2.4 2.4 2.4 2.4 2.4 0 0
2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 0
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

(f) unim-dec

0 0 0 0 0 0 0 0 0
2.4 0 0 0 0 0 0 0 0
2.4 2.4 0 0 0 0 0 0 0
4.0 4.0 4.0 0 0 0 0 0 0
4.0 4.0 4.0 4.0 0 0 0 0 0
4.0 4.0 4.0 4.0 4.0 0 0 0 0
5.6 5.6 5.6 5.6 5.6 5.6 0 0 0
5.6 5.6 5.6 5.6 5.6 5.6 5.6 0 0
7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 0

(g) unim-inc

https://github.com/cikeokwu/swap_rosca_sims


Table 5: Swap Rosca Performance Under Diverse Value Dis-
tributions (9 participants). CRRA parameter values W = 4,
a = .5

Profile OPT Random Quasilinear CRRA
pointmass 32 2.002 1.220 1.220
unif-dec 45 2.452 1.000 1.327
unif-inc 36 1.351 1.030 1.031

pareto-dec 35.994 2.828 1.000 1.451
pareto-inc 34.580 1.485 1.096 1.106
unim-dec 36 2.337 1.116 1.310
unim-inc 35.2 1.708 1.138 1.141

Table 6: Swap Rosca Performance Under Diverse Value Dis-
tributions (30 participants). CRRA parameter values W =
4, a = .5

Profile OPT Random Quasilinear CRRA
pointmass 116 2.002 1.218 1.218
unif-dec 465 2.819 1.000 1.385
unif-inc 435 1.452 1.043 1.058

pareto-dec 399.499 4.000 1.000 1.757
pareto-inc 396.165 1.323 1.066 1.061
unim-dec 400 2.553 1.098 1.347
unim-inc 398.667 1.636 1.114 1.114
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